

ADVANCED GCE PHYSICS A

G484

The Newtonian World

Candidates answer on the question paper.

OCR supplied materials:

Data, Formulae and Relationships Booklet

Other materials required:

Electronic calculator

Monday 27 June 2011 Morning

Duration: 1 hour

Candidate forename			Candidate surname			
Centre number			Candidate nu	ımber		

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the boxes above. Please write clearly and in capital letters.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully. Make sure you know what you have to do before starting your answer
- Write your answer to each question in the space provided. If additional space is required, you should use the lined pages at the end of this booklet. The question number(s) must be clearly shown.
- Answer all the questions.
- Do **not** write in the bar codes.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 60.
- You may use an electronic calculator.
- You are advised to show all the steps in any calculations.
- Where you see this icon you will be awarded marks for the quality of written communication in your answer.

This means for example you should:

- ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear;
- organise information clearly and coherently, using specialist vocabulary when appropriate.
- This document consists of 12 pages. Any blank pages are indicated.

Answer all the questions.

1	(a)	(i)	State Newton's first law of motion.
			[1]
		(ii)	Define the <i>newton</i> .
			[1]
	(b)	The	et plane on the deck of an aircraft carrier is accelerated before take-off using a catapult. The mass of the plane is 3.2×10^4 kg and it is accelerated from rest to a velocity of $55 \mathrm{ms^{-1}}$ in the of 2.2 s. Calculate
		(i)	the mean acceleration of the plane
			mean acceleration =ms ⁻² [2]
		(ii)	the distance over which the acceleration takes place
			distance m [9]
		 \	distance = m [2]
		(iii)	the mean force producing the acceleration.
			mean force =

(c)		e jet plane describes a horizontal circle of radius 8/0m flying at a constant speed of ms ⁻¹ .
	(i)	State the direction of the resultant horizontal force acting on the plane.
	(ii)	Calculate the magnitude of this horizontal force.
		force =N [2]
(d)	At a	changing the velocity of the plane it can be made to fly in a vertical circle of radius 1500 m. a particular point in the vertical circle, the contact force between the pilot and his seat may zero and the pilot experiences "weightlessness".
	(i)	State and explain at what point in the circle this weightlessness may occur.
	(ii)	Calculate the speed of the plane at which weightlessness occurs.
		speed =ms ⁻¹ [2]
		[Total: 14]

© OCR 2011 Turn over

2 (a) Fig. 2.1 shows a mass attached to the end of a spring. The mass is pulled down and then released. The mass performs vertical simple harmonic motion.

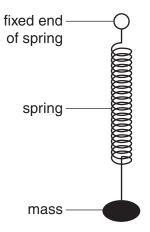


Fig. 2.1

(i)	Define simple harmonic motion.
	[2]
(ii)	Mark the following statements about the oscillating mass-spring system as <i>true</i> or <i>false</i> .

statement	true/false
The period of oscillation is constant.	
The net force on the mass is equal to its weight.	
The acceleration of the mass is a maximum at the mid-point of the oscillations.	
The velocity of the mass is proportional to the displacement.	

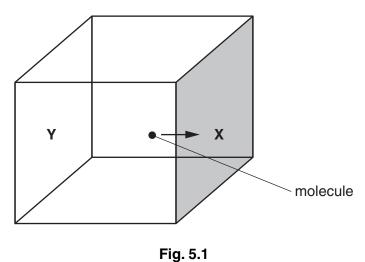
- **(b)** A student wishes to investigate whether the period of oscillation of a simple pendulum is constant for all angles of swing. Describe how the student should carry out the investigation. Include the following in your description:
 - a sketch of the apparatus with angle of swing labelled
 - details of how the measurements would be made
 - how these results would be used to form a conclusion
 - the major difficulty likely to be encountered and how this might be overcome.

Sketch:
[5

© OCR 2011 Turn over

[Total: 9]

	table sh	nows, in modern units, inf		at was known to physicists at the ti
position	ac inewior	distance <i>r</i> from centre of	f the	gravitational field strength g due to
		Earth/km		the Earth/N kg ⁻¹
surface (6.4 × 10 ³		9.8
Moon's o	orbit	3.8 × 10 ⁵		2.7 × 10 ⁻³
Use	the infor	rmation provided in the tab	le to	
(i)			gravitationa	I field strength g and the distance
	verify thi	nis relationship		
		'		
		·		
		·		
		'		
		·		
(ii)	show that	·		
(ii)	show that			
(ii)	show that			
(ii)	show that			
(ii)	show that			
(ii)	show that			
(ii)		at the mass of the Earth is	about 6 × 1	
(iii)			about 6 × 1	
		at the mass of the Earth is	about 6 × 1	
		at the mass of the Earth is	about 6 × 1	


[Total: 8]

4	(a)		In your answer you should use appropriate technical terms spelled correctly.
		Stat	te the terms used to describe the thermal energy required to change
		(i)	a solid into a liquid at a constant temperature
			[1]
		(ii)	a liquid into a gas at a constant temperature.
			[1]
	(b)		st households waste energy by overfilling electric kettles. Assume that, on average, 0.80 kg vater per household per day is unnecessarily boiled.
		(i)	Estimate the energy required when 0.80 kg of water, initially at 18 $^{\circ}$ C, is heated in an electric kettle. The kettle switches off automatically when the water is boiling steadily at 100 $^{\circ}$ C. The specific heat capacity of water is 4200 J kg ⁻¹ K ⁻¹ .
			heat energy = J [2]
		(ii)	State and explain two different reasons why the actual quantity of energy required to warm the water to 100° C is greater than the estimate in (i).
			1
			2
			[2]
		(iii)	Calculate, in kWh, the average annual energy wasted per household by boiling too much water.
			energy =kWh [2]

[Total: 8] Turn over

5	(a)	und	One assumption required for the development of the kinetic model of a gas is that molecules undergo perfectly elastic collisions with the walls of their containing vessel and with each other.						
		(i)	Explain what is meant by a <i>perfectly elastic collision</i> .						
			[1]						
		(ii)	State three other assumptions of the kinetic theory of gases.						
			1						
			2						
			3						
			[3]						
	(b)		5.1 shows a cubical box of side length $0.20\mathrm{m}$. The box contains one molecule of mass $\times~10^{-26}\mathrm{kg}$ moving with a constant speed of $500\mathrm{ms^{-1}}$. The molecule collides elastically at						

right angles with the opposite faces **X** and **Y** of the box.

(i) Calculate the change of momentum each time the molecule collides with face X.

change of momentum = $....kgms^{-1}$ [2]

(ii) Calculate the number of collisions made by the molecule with face X in 1.0 s.

(iii)	number =[1] Calculate the mean force exerted on the molecule by face X .
(iv)	force =N [2] Hence state the force exerted on face X by the molecule. Justify your answer.
	[1] single molecule in the box in (b) is replaced by 3 moles of air at atmospheric pressure. Calculate the number of air molecules in the box.
	number =[1] Suggest why the pressure exerted by the air on each of the six faces of the box is the same.
	[1] The temperature of the air inside the box is increased. Explain in terms of the motion of the air molecules how the pressure exerted by the air will change.
	[2]

6 (a) (i) A container has 1 mole of an ideal gas. The volume of the container is V cubic metres (m³) and the gas exerts pressure p pascal (Pa). On Fig. 6.1, show the relationship between the product pV and the absolute temperature T of the gas. [1]

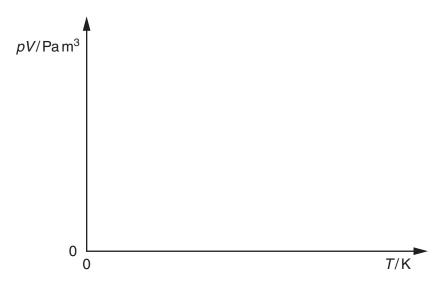


Fig. 6.1

(ii)	State the value of the gradient of this graph.

(b) The volume of 1.5 moles of an ideal gas at $-40\,^{\circ}$ C is $2.4\times10^{-2}\,\text{m}^3$. The gas is now heated at constant pressure p. Calculate

.....[1]

(i) the new volume of the gas at a temperature of 250 °C

(ii) the value of the pressure p.

[Total: 7]

ADDITIONAL PAGE

If additional space is required, you should use the lined pages below. The question number(s) must be clearly shown.

ADDITIONAL PAGE

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

 $For queries \ or \ further \ information \ please \ contact \ the \ Copyright \ Team, \ First \ Floor, 9 \ Hills \ Road, \ Cambridge \ CB2 \ 1GE.$

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.