Kinematics

If the particle starts at O and moves away from it in a straight line, this direction is taken to be positive. If the particle moves towards O, the direction is taken to be negative.

$$s=0$$
 +ve direction

Displacement, s: distance from a fixed point 0

Velocity and acceleration are examples of rates of change:

velocity, v: rate of change of **displacement**; \pm indicates particle's direction.

acceleration, a: rate of change of velocity.

Example 1

A bicycle travels along a straight line. Its displacement, $s\, m$, from its starting position, O, after time

t seconds is given by the equation

$$s = 4t + 3t^2 - t^3$$
m

After a time of 2 seconds, find the bicycle's

- a velocity in m/s
- b acceleration in m/s2

a
$$s = 4t + 3t^2 - t^3$$

 $v = \frac{ds}{dt} = 4 + 6t - 3t^2$ m/s
At $t = 2$, $v = 4 + 6(2) - 3(2)^2$ $v = 4$ m/s

(moving away from O)

b
$$v = 4 + 6t - 3t^2$$

 $a = \frac{dv}{dt} = 6 - 6t \text{ m/s}^2$
At $t = 2$, $a = 6 - 6(2)$ $a = -6 \text{ m/s}^2$ (slowing down)

KEY POINTS

- Velocity is the rate at which displacement changes with time.
- $v = \frac{ds}{dt}$ (Gradient of distance-time graph is velocity)
- Acceleration is the rate at which velocity changes with time.
- $a = \frac{dv}{dt}$ (Gradient of velocity–time graph is acceleration)
- displacement differentiate velocity differentiate acceleration

(s)
$$\rightarrow$$
 $(v = \frac{ds}{dt}) \rightarrow$ $(a = \frac{dv}{dt})$

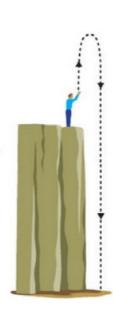
Example 2

A pebble is thrown vertically upwards such that its height, s m, above the top of the cliff after t s is given by

$$s = 10t - 5t^2$$

Find the maximum height reached by the pebble and when this occurs.

$$s = 10t - 5t^2$$


$$v = \frac{ds}{dt} = 10 - 10t$$

At the maximum height the velocity is zero $\Rightarrow 10 - 10t = 0 \Rightarrow t = 1$

At
$$t = 1$$
s

$$s_{\text{max}} = 10(1) - 5(1)^2$$
 $s_{\text{max}} = 5 \,\text{m}$

$$s_{\text{max}} = 5 \,\text{m}$$

Questions on Kinematics

1 The displacement, s m, of a particle after t s from a fixed point O is given by

 $s = 10t^2 - 30t + 1$

After a time of 2s find the particle's

- a velocity in m/s
- acceleration in m/s²
- The displacement, s m, of a particle after t s from a fixed point O is given by

$$s = 10 + 7t - t^2$$

After a time of 3s find the particle's

- a velocity in m/s
- acceleration in m/s²
- The displacement, s m, of a particle after t s from a fixed point O is given by

$$s = t^3 + 2t^2 - 3t + 1$$

After a time of 2s find the particle's

- a velocity in m/s
- b acceleration in m/s²
- 4 \blacktriangleright The displacement, s m, of a particle after t s from a fixed point O is given by

$$s = 20 + 12t + 3t^2 - t^3$$

After a time of 2s find the particle's

- a velocity in m/s
- b acceleration in m/s²
- A tennis ball is projected vertically upwards such that its height, s m, after t s is given by $s = 16t 4t^2$

Find the maximum height reached by the ball and when this occurs.

The velocity of a stone, $v \, \text{m/s}$, $t \, \text{s}$ after it is thrown upwards is given by

$$v = 4 + 12t - t^2$$

Calculate the stone's

- a velocity after 2s
- b acceleration after 2s
- c maximum velocity.

Q6c HINT

Maximum velocity occurs when acceleration is zero.

Solutions

1 > a
$$v = 20t - 30 \,\text{m/s}, 10 \,\text{m/s}$$

b
$$a = 20 \,\text{m/s}^2$$

2 a
$$v = 7 - 2t$$
 m/s, 1 m/s

b
$$a = -2 \,\text{m/s}^2$$

3 > a
$$v = 3t^2 + 4t - 3 \text{ m/s}, 17 \text{ m/s}$$

b
$$a = 6t + 4 \text{ m/s}^2$$
, 16 m/s^2

4 > a
$$v = 12 + 6t - 3t^2$$
 m/s, 12 m/s

b
$$\alpha = 6 - 6t \text{ m/s}^2, -6 \text{ m/s}^2$$

5 >
$$v = 16 - 8t$$
, $v = 0$ at $t = 2$, $s_{\text{max}} = 16 \text{ m}$

6 > a
$$v = 24 \,\text{m/s}$$

b
$$a = 12 - 2t \,\text{m/s}^2$$
, $a = 8 \,\text{m/s}^2$

$$c t = 6, v_{max} = 40 \text{ m/s}$$