Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

General Certificate of Education Advanced Subsidiary Examination June 2010

Physics A

PHYA2

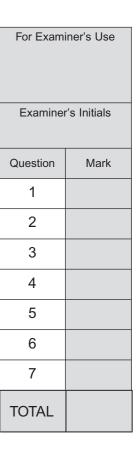
Unit 2 Mechanics, Materials and Waves

Wednesday 9 June 2010 9.00 am to 10.15 am

For this paper you must have:

- a ruler
- a calculator
- a Data and Formulae Booklet.

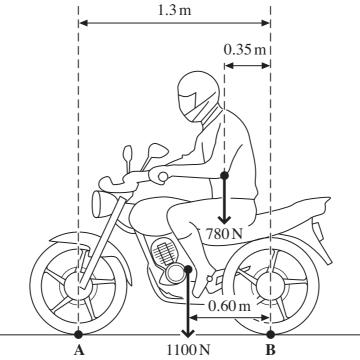
Time allowed


• 1 hour 15 minutes

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information


- The marks for questions are shown in brackets.
- The maximum mark for this paper is 70.
- You are expected to use a calculator where appropriate.
- A Data and Formulae Book is provided as a loose insert.
- You will be marked on your ability to:
 - use good English
 - organise information clearly
 - use specialist vocabulary where appropriate.

Answer all questions in the spaces provided.

Figure 1 shows a motorcycle and rider. The motorcycle is in contact with the road at A and B.

Figure 1
1.3 m

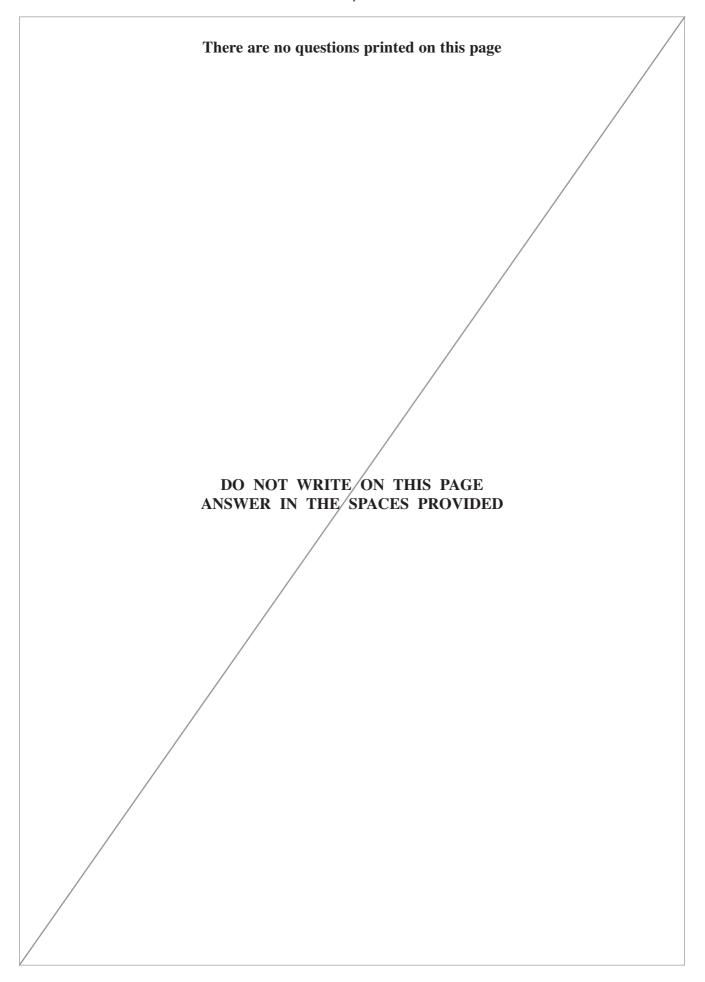
The motorcycle has a weight of 1100 N and the rider's weight is 780 N.

1 (a)	State the Principle of Moments.	
		·····
		(2 marks)

1 (b) Calculate the moment of the rider's weight about **B**. Give an appropriate unit.

answer =(2 *marks*)

By taking the moments about B, calculate the vertical force that the road exerts on the front tyre at A. State your answer to an appropriate number of significant figures.


1 (d) Calculate the vertical force that the road exerts on the rear tyre at **B**.

1 (e) The maximum power of the motorcycle is $7.5 \, \text{kW}$ and it has a maximum speed of $26 \, \text{m s}^{-1}$, when travelling on a level road.

Calculate the total horizontal resistive force for this speed.

11

- 2 Galileo used an inclined plane, similar to the one shown in **Figure 2**, to investigate the motion of falling objects.
- 2 (a) Explain why using an inclined plane rather than free fall would produce data which is valid when investigating the motion of a falling object.

(2 marks)

2 (b) In a demonstration of Galileo's investigation, the number of swings of a pendulum was used to time a trolley after it was released from rest. A block was positioned to mark the distance that the trolley had travelled after a chosen whole number of swings. See **Figure 2**.

trolley

block

inclined plane

weight

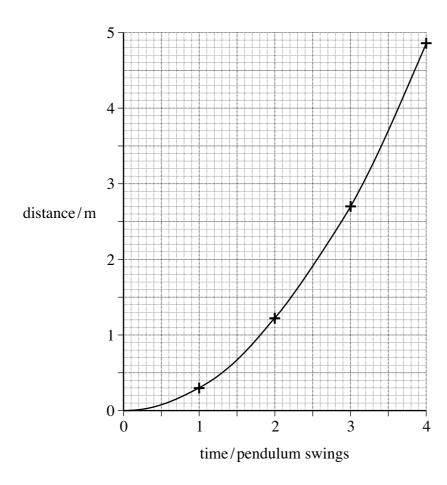
1.8°

The mass of the trolley in **Figure 2** is $0.20 \,\mathrm{kg}$ and the slope is at an angle of 1.8° to the horizontal.

2 (b) (i) Show that the component of the weight acting along the slope is about 0.06 N.

(2 marks)

Question 2 continues on the next page



2 (b) (ii) Calculate the initial acceleration down the slope.

answer =
$$m s^{-2}$$
 (2 marks)

2 (c) In this experiment, the following data was obtained. A graph of the data is shown below it.

time/pendulum swings	distance travelled/m
1	0.29
2	1.22
3	2.70
4	4.85

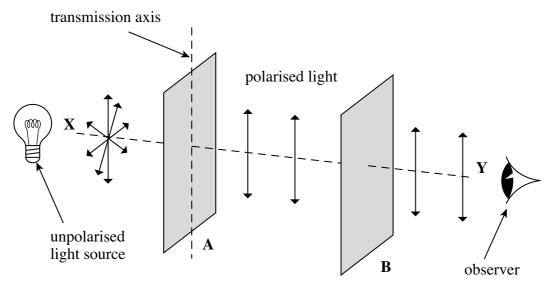
2 (c)	From the graph on page 6 , state what you would conclude about the motion of the trolley?
	Give a reason for your answer.
	(2 marks)
2 (d)	Each complete pendulum swing had a period of 1.4 s. Use the graph on page 6 to find the speed of the trolley after it had travelled 3.0 m.
	answer = $m s^{-1}$ $(3 marks)$
	(3 marks)

11

Turn over for the next question

- 3 (a) Define the amplitude of a wave.

 (1 mark)


 3 (b) (i) Other than electromagnetic radiation, give one example of a wave that is transverse.

 (1 mark)

 3 (b) (ii) State one difference between a transverse wave and a longitudinal wave.

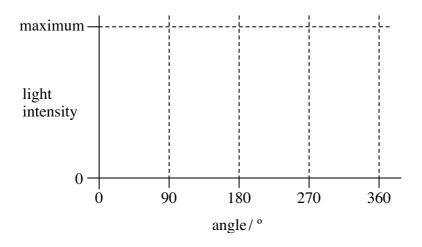

 (1 mark)
- **Figure 3** shows two identical polarising filters, **A** and **B**, and an unpolarised light source. The arrows indicate the plane in which the electric field of the wave oscillates.
- **3 (c) (i)** If polarised light is reaching the observer, draw the direction of the transmission axis on filter **B** in **Figure 3**.

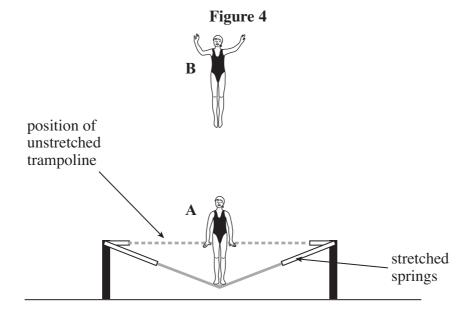
Figure 3

(1 mark)

3 (c) (ii) The polarising filter **B** is rotated clockwise through 360° about line **XY** from the position shown in **Figure 3**. On the axes below, sketch how the light intensity reaching the observer varies as this is done.

(2 marks)

3 (d)	State one application, other than in education, of a polarising filter and give a reason for
	ts use.


(2 marks)

Turn over for the next question

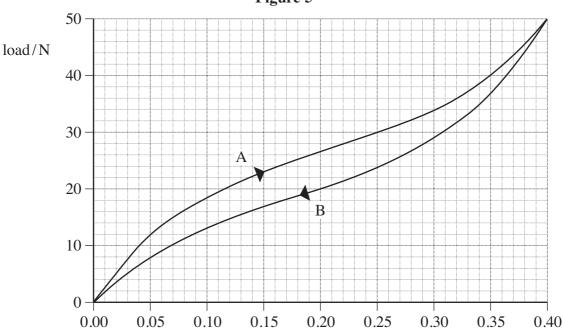
8

Figure 4 shows a gymnast trampolining.

In travelling from her lowest position at $\bf A$ to her highest position at $\bf B$, her centre of mass rises 4.2 m vertically. Her mass is 55 kg.

4 (a) Calculate the increase in her gravitational potential energy when she ascends from position **A** to position **B**.

answer = J
(2 marks)


4 (b)	The gymnast descends from position ${\bf B}$ and regains contact with the trampoline when it is in its unstretched position. At this position, her centre of mass is 3.2 m below its position at ${\bf B}$.		
4 (b) (i)	Calculate her kinetic energy at the instant she touches the unstretched trampoline.		
	answer = J (1 mark)		
4 (b) (ii)	Calculate her vertical speed at the same instant.		
	$answer = \dots m s^{-1}$ $(2 marks)$		
4 (c)	Draw an arrow on Figure 4 to show the force exerted on the gymnast by the trampoline when she is in position A . (1 mark)		
4 (d)	As she accelerates upwards again from position A , she is in contact with the trampoline for a further 0.26 s. Calculate the average acceleration she would experience while she is in contact with the trampoline, if she is to reach the same height as before.		
	$answer = \dots ms^{-2}$ $(2 marks)$		
Question 4 continues on the next page			

4 (e)	On her next jump the gymnast decides to reach a height above position B . Describe and explain, in terms of energy and work, the transformations that occur as she ascends from her lowest position A until she reaches her new position above B . The quality of your written communication will be assessed in this question.
	(6 marks)

A rubber cord is used to provide mechanical resistance when performing fitness exercises. A scientist decided to test the properties of the cord to find out how effective it was for this purpose. The graph of load against extension is shown in **Figure 5** for a 0.50 m length of the cord.

Figure 5

Curve A shows loading and curve B shows unloading of the cord.

5 (a) State which feature of this graph confirms that the rubber cord is elastic.

......(1 mark)

5 (b) Explaining your method, use the graph (curve **A**) to estimate the work done in producing an extension of 0.30 m.

•••••		•••••
•••••	• • • • • • • • • • • • • • • • • • • •	

answer = J

extension/m

(3 marks)

Question 5 continues on the next page

5 (c) Assuming that line A is linear up to an extension of 0.040 m, calculate the Young modulus of the rubber for small strains.

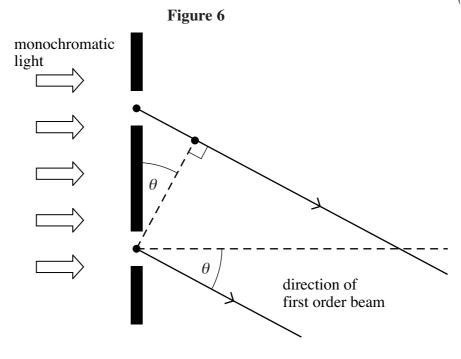
The cross-sectional area of the cord = $5.0 \times 10^{-6} \, \text{m}^2$ The unstretched length of the cord = $0.50 \, \text{m}$

answer =Pa (3 marks)

- 5 (d) The scientist compared this cord with a steel spring that reached the same extension for the same maximum load without exceeding its *limit of proportionality*.
- **5** (d) (i) On **Figure 5**, draw the load-extension line for this spring up to a load of 50 N and label it **C**.

(1 mark)

 $\mathbf{5}$ (d) (ii) With reference to the spring, explain what is meant by limit of proportionality.


(1 mark)

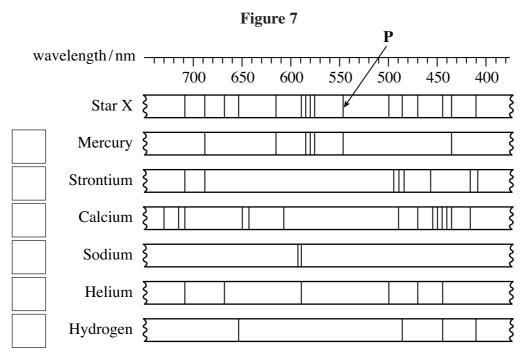
6 For a plane transmission diffraction grating, the diffraction grating equation for the first order beam is:

$$\lambda = d \sin \theta$$

6 (a) Figure 6 shows two of the slits in the grating. Label Figure 6 with the distances d and λ .

(2 marks)

State and explain what happens to the value of angle θ for the first order beam if the wavelength of the monochromatic light decreases.

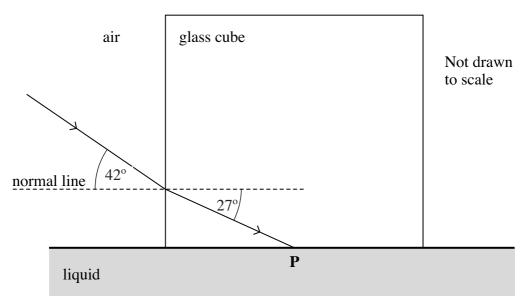

Question 6 continues on the next page

A diffraction grating was used with a spectrometer to obtain the line spectrum of star X shown in **Figure 7**. Below this are some line spectra for six elements that have been obtained in the laboratory.

Place ticks in the boxes next to the **three** elements that are present in the atmosphere of star X.

(2 marks)

- **6** (d) The diffraction grating used to obtain the spectrum of star X had 300 slits per mm.
- 6 (d) (i) Calculate the distance between the centres of two adjacent slits on this grating.


answer = m (1 mark)

6 (d) (ii) Calculate the first order angle of diffraction of line P in Figure 7.

answer =degrees (2 marks)

A glass cube is held in contact with a liquid and a light ray is directed at a vertical face of the cube. The angle of incidence at the vertical face is then decreased to 42° as shown in **Figure 8**. At this point the angle of refraction is 27° and the ray is totally internally reflected at **P** for the first time.

Figure 8

7 (a) Complete **Figure 8** to show the path of the ray beyond **P** until it returns to air.

(3 marks)

7 (b) Show that the refractive index of the glass is about 1.5.

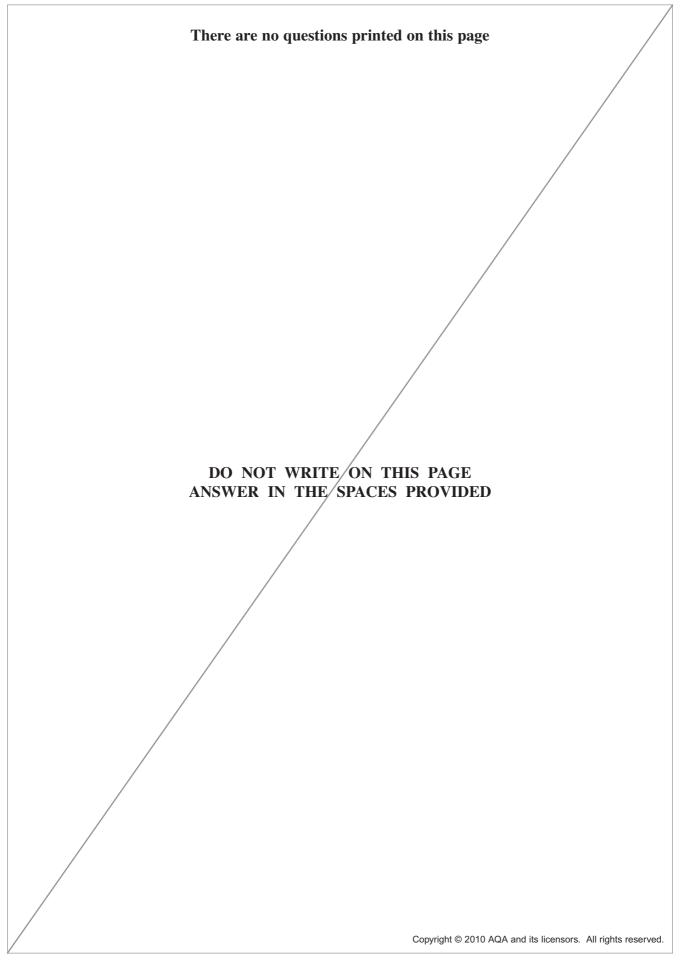
(2 marks)

7 (c) Calculate the critical angle for the glass-liquid boundary.

answer =degrees (1 mark)

Question 7 continues on the next page

(2 marks)


7 (d)	Calculate the refractive index of the liquid.	
		answer =

END OF QUESTIONS

