

STEP Support Programme

Hints and Partial Solutions for Assignment 10

Warm-up

1 (i) Note that $AP = \tan \alpha$ and $PC = \tan \beta$. You can also show that $AB = \frac{1}{\cos \alpha}$. The result $\sin(90^{\circ} - \beta) = \cos \beta$ will be helpful.

Do be careful with brackets, write

$$\cos \alpha \cos \beta \times (\tan \alpha + \tan \beta)$$

rather than

$$\cos \alpha \cos \beta \times \tan \alpha + \tan \beta$$
.

You can find $\sin(\alpha - \beta)$ from $\sin(\alpha + (-\beta))$ using the previous result, along with $\sin(-\beta) = -\sin\beta$ and $\cos(-\beta) = \cos\beta$.

You can find $\cos(\alpha + \beta)$ from $\cos(\alpha + \beta) = \sin(90^{\circ} - (\alpha + \beta)) = \sin((90^{\circ} - \alpha) - \beta)$ and similarly for $\cos(\alpha - \beta)$.

Note that when you have the expression for $\sin(\alpha + \beta)$, you can derive $\sin(\alpha - \beta)$ and $\cos(\alpha \pm \beta)$ with hardly any extra work. With these you can also derive $\tan(\alpha \pm \beta)$ fairly painlessly.

(ii) $\sin 75^{\circ} = \sin(45^{\circ} + 30^{\circ})$ and $\sin 15^{\circ} = \sin(45^{\circ} - 30^{\circ})$. At the risk of repeating ourselves: when a question asks for **values** then decimal approximations are not what are wanted.

Answers:
$$\sin 75^{\circ} = \frac{\sqrt{3}+1}{2\sqrt{2}}$$
 and $\sin 15^{\circ} = \frac{\sqrt{3}-1}{2\sqrt{2}}$.

(iii) You will need expressions for $\sin 2A$ and $\cos 2A$, but these can be found from the results in part (i), for example $\sin 2A = \sin(A+A) = \cdots$. You will probably also need to use $\sin^2 A + \cos^2 A = 1$.

It is a good idea to check your answer, for example by substituting $A = 30^{\circ}$.

Answer: $\cos 3A = 4\cos^3 A - 3\cos A$.

Preparation

- 2 (i) Things will be much easier if you write $1 \frac{1}{2} = \frac{1}{2}$ etc. before you try to multiply. The prime factors of 120 or 2, 3, and 5. The final answer is 32.
 - (ii) Note that if a is a positive integer then a-1 is an integer satisfying $a-1 \ge 0$. If you expand you get $x^a x^{a-1}$, and since x and a are integers and $a-1 \ge 0$ this is an integer subtracted from an integer, hence is an integer!
 - (iii) $39600 = 2^4 \times 3^2 \times 5^2 \times 11$ and $52920 = 2^3 \times 3^3 \times 5 \times 7^2$ so the HCF is $2^3 \times 3^2 \times 5 = 360$.
 - (iv) These sorts of statements can be a bit confusing. I usually re-order them in my head, so

"a = b if $a^2 = b^2$ " becomes "if $a^2 = b^2$ then a = b" which I can now see is false and

"a = b only if $a^2 = b^2$ " becomes "only if $a^2 = b^2$ is it the case that a = b" which I can now see is true.

- (a) True: ab even $\Leftarrow a$ and b both even.
- (b) False as ab would be even if just one of a and b were even, so ab even $\not\Rightarrow a$ and b both even.
- (c) False: either a = b or a = -b if $a^2 = b^2$, so $a = b \not= a^2 = b^2$.
- (d) True: $a = b \Rightarrow a^2 = b^2$.
- (e) True: equilateral ← three equal sides.
- (f) True: equilateral \Rightarrow three equal sides.
- (v) (a) True.
 - (b) False. An odd number is prime if it is three, but this is not an only if.
 - (c) False. x = 3 only if $x^2 9 = 0$ (i.e. this is not an if).
 - (d) False. It is certainly the case that the triangle is right-angled if $a^2 + b^2 = c^2$, but this is not a necessary condition (it is not **only if**): the triangle is also right-angled if $a^2 = b^2 + c^2$ (i.e. a is the hypotenuse).
 - (e) True.

The STEP question

- 3 (i) (a) f(12) = 4 and f(180) = 48.
 - (b) If you use the hint provided and write $N = p_1^{a_1} \times p_2^{a_2} \times \cdots$ then you should find that $f(N) = p_1^{a_1-1}(p_1-1)p_2^{a_2-1}(p_2-1)\cdots$. You can then explain why this is an integer.
 - (ii) (a) A simple counterexample (remember the simpler the better!) would be $f(12) \neq f(2) \times f(6)$. You show it is indeed a counterexample by calculating the three values of the function.
 - (b) This result is true, and can be shown just by using the definitions such as $f(p) = p\left(1 \frac{1}{p}\right)$. When p and q are not distinct (p = q), the result is not true.
 - (c) Try f(4) and f(15). The statement f(p)f(q) = f(pq) holds as long as p and q are co-prime, that is that they have no prime factors in common. When p and q have a prime factor in common then $f(pq) \neq f(p)f(q)$
 - (iii) Start by writing $f(p^m)=p^m\left(1-\frac{1}{p}\right)=p^{m-1}(p-1)$. Then express 146410 as a product and compare this to $p^{m-1}(p-1)$ so that you get $p^{m-1}(p-1)=11^4\times 10$. You should then be able to spot what p and m are.

Warm down

- 4 (i) Leave answers in fractions (unless specifically asked for a decimal approximation). Answer: $\frac{144}{13}$.
 - (ii) There is nothing wrong with the negative solution (nothing in the question says that the numbers have to be positive) so put down both solutions. Answer: (7,4) or (-4,-7).
 - (iii) Two of the terms simplify nicely, but the other two do not. Answer: $ax + by a^{\frac{1}{4}}b^{\frac{2}{5}}x^{\frac{1}{3}}y^{\frac{1}{6}} a^{\frac{3}{4}}b^{\frac{3}{5}}x^{\frac{2}{3}}y^{\frac{5}{6}}$.
 - (iv) Start by multiplying numerator and denominator by $\sqrt{3} 1$. Simplifying $\sqrt{12 + 6\sqrt{3}} \times (\sqrt{3} - 1)$ can be little complicated. One way to proceed it to take the $\sqrt{3} - 1$ inside the square root, so simplify $\sqrt{(12 + 6\sqrt{3}) \times (\sqrt{3} - 1)^2}$. Everything should simplify nicely to give $\sqrt{3}$.

