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1. For ALL APPLICANTS.

For each part of the question on pages 3-7 you will be given five possible answers,
just one of which is correct. Indicate for each part A-J which answer (a), (b), (c), (d),
or (e) you think is correct with a tick (v/) in the corresponding column in the table
below. Please show any rough working in the space provided between the parts.




A. The inequality

< 8x*+9
is satisfied precisely when

(a)

-3 <z <3

(b)

0<x<4

() 1<x<3;, (d —-1<z<9;

(e)

—3J << -1

B. The graph of the function y = log;,(z* — 2z + 2) is sketched in
y

Turn over



C. The cubic
y=kar’ — (k+ 12>+ 2—-k)z —k

has a turning point, that is a minimum, when x = 1 precisely for

1
(a) k>0, (b) 0<k<l1l, (c) k> 2 (d) k<3, (e) allvaluesofk.

D. The reflection of the point (1,0) in the line y = ma has coordinates

o (BHaS) 0 am © G-mm),
(@) (i;:zlirr;?) () (1—m%m).



E. As x varies over the real numbers, the largest value taken by the function
(481112 xr+4cosx + 1)2
equals

(a)  17+12v2,  (b) 36, (c)  48V2,  (d)  64—12v3, (e) 8L

F. The functions S and T" are defined for real numbers by
S(z) =a+1, and T(r) = —x.

The function S is applied s times and the function 7 is applied ¢ times, in some order,
to produce the function
F(z)=8—u.

It is possible to deduce that:
a) s=8and t=1.

b) s is odd and ¢ is even.
c) s is even and ¢ is odd.
d) s and t are powers of 2.
e) none of the above.

(
(
(
(
(
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G. Let n be a positive integer. The coefficient of z3y° in the expansion of
(L+zy+y)"

equals

H. The function F(n) is defined for all positive integers as follows: F'(1) = 0 and for all
n =2,

Fn)=Fn—-1)+2 if 2 divides n but 3 does not divide n;

Fn)y=F(n—-1)+3 if 3 divides n but 2 does not divide n;

Fn)=F(n—-1)+4 if 2 and 3 both divide n;
F(n)=F(n—-1) if neither 2 nor 3 divides n.

The value of F'(6000) equals

(a) 9827,  (b) 10121,  (c) 11000,  (d) 12300,  (e) 12352.



I. The graph of the function

y = 2962 —4x+3

can be obtained from the graph of y = 2¢° by
(a) a stretch parallel to the y-axis followed by a translation parallel to the y-axis.
(b) a translation parallel to the z-axis followed by a stretch parallel to the y-axis.
(c) a translation parallel to the x-axis followed by a stretch parallel to the x-axis.
(d) a translation parallel to the x-axis followed by reflection in the y-axis.
(e) reflection in the y-axis followed by translation parallel to the y-axis.

J. For all real numbers z, the function f(x) satisfies
1
6+ f(z) = 2f(—x) + 327 (/ f(t) dt) :
-1

It follows that fj1 f(x)dz equals

Turn over



2. For ALL APPLICANTS.
Let a and b be real numbers. Consider the cubic equation

23+ 2b2* — a*x — b* = 0. (%)
(i) Show that if = 1 is a solution of () then

1-vV2<h< 1+ V2

(ii) Show that there is no value of b for which x = 1 is a repeated root of (x).
(iii) Given that x = 1 is a solution, find the value of b for which (%) has a repeated root.
For this value of b, does the cubic

y = 2° + 2bx? — a’x — b?

have a maximum or minimum at its repeated root?
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MATHEMATICS

MATHEMATICS & STATISTICS
For APPLICANTS IN ¢\ /A rHEMATICS & PHILOSOPHY ONLY.

MATHEMATICS & COMPUTER SCIENCE

Computer Science and Computer Science € Philosophy applicants should turn to
page 14.

The function f(z) is defined for all real numbers and has the following properties, valid
for all z and y:

(A flz+y) = f(2) fy)
(B)  df/dz = f(z).
(C)  f(z)>0.

Throughout this question, these should be the only properties of f that you use; no
marks will be awarded for any use of the exponential function.

Let a = f(1).
(i) Show that f(0) = 1.
(ii) Let
1
I= dz.
| sy
Show that I =a — 1.

(iii) The trapezium rule with n steps is used to produce an estimate I,, for the integral

I. Show that L /bt
+
Li=— (") (a-1
" 2n(b—1)(a )

(iv) Given that I,, > I for all n, show that

where b = f(1/n).

10
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4.
MATHEMATICS

For APPLICANTS IN ¢ MATHEMATICS & STATISTICS ONLY.
MATHEMATICS & PHILOSOPHY

Mathematics € Computer Science, Computer Science and Computer Science € Philos-

ophy applicants should turn to page 14.

In the diagram below is sketched a semicircle with centre B and radius 1. Three points
A, C, D lie on the semicircle as shown with o denoting angle CAB and [ denoting angle
DAB. The triangles ABC' and ABD intersect in a triangle ABX.

Throughout the question we shall consider the value of « fixed. Assume for now that
O<a<pf<n/2

D

A B

(i) Show that the area of the triangle ABC' equals

1
5 sin(2a).

(ii) Let
area of triangle ABX
area of triangle ABC'

Without calculation, explain why, for every k in the range 0 < k& < 1, there is a unique
value of 8 such that F = k.

(iii) Find the value of 8 such that F' = 1/2.

(iv) Show that
_ sin(2f)sina
 sin(28 — a)sin(2a)

(v) Suppose now that 0 < f < a < 7/2. Write down, without further calculation, an
expression for the area of ABX and hence a formula for F.

12
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5. For ALL APPLICANTS.

Poets use rhyme schemes to describe which lines of a poem rhyme. Each line is
denoted by a letter of the alphabet, with the same letter given to two lines that rhyme.
To say that a poem has the rhyming scheme ABABCDED, indicates that the first and
third lines rhyme, the second and fourth lines rhyme, and the sixth and eighth lines
rhyme, but no others.

More precisely, the first line of the poem is given the letter A. If a subsequent line
rhymes with an earlier line, it is given the same letter; otherwise, it is given the first
unused letter. (For the purposes of this question, you can assume that we have an
infinite supply of “letters”, not just the 26 letters of the alphabet.)

The purpose of this question is to investigate how many different rhyme schemes
there are for poems of n lines. We write r,, for this number.

(i) There are five different rhyming schemes for poems of three lines (so r3 = 5). List
them.

Let ¢, denote the number of rhyme schemes for poems with lines n that use exactly
k different letters. For example c3o = 3 corresponding to the rhyming schemes AAB,
ABA and ABB.

(i) What is ¢, for n > 17
What is ¢, ,,?

Explain your answers.

(iii) Suppose that 1 < k < n. By considering the final letter of a rhyming scheme,
explain why

Cn,k = kcnfl,k + Cn—1k—1 -

(iv) Write down an equation showing how to calculate r, in terms of the ¢, . Hence
calculate r4.

(v) Give a formula for ¢, in terms of n (for n > 2). Justify your answer.

14
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6.
COMPUTER SCIENCE

For APPLICANTS IN ¢ MATHEMATICS & COMPUTER SCIENCE ; ONLY.

COMPUTER SCIENCE & PHILOSOPHY

Alice plays a game 5 times with her friends Sam and Pam. In each game Alice
chooses two integers x and y with 1 < x < y. She whispers the sum = + y to Sam, and
the product x x y to Pam, so that neither knows what the other was told. Sam and
Pam then have to try to work out what the numbers z and y are. Sam and Pam are
well known expert logicians.

(i) In the first game, Pam says “I know z and y.”

What can we deduce about the values of x and y? Explain your answer.

(ii) In the second game, Pam says “I don’t know what x and y are.”
Sam then says “I know = and y.”

Suppose the sum is 4. What are z and y? Explain your answer.

(iii) In the third game, Pam says “I don’t know what x and y are.”
Sam then says “I don’t know what x and y are.”
Pam then says “I now know z and y.”

Suppose the product is 4. What are x and y? Explain your answer.

(iv) In the fourth game, Pam says “I don’t know what = and y are.”
Sam then says “I already knew that.”
Pam then says “I now know x and y.”

Suppose the product is 8. What are x and y? Explain your answer.

(v) Finally, in the fifth game, Pam says “I don’t know what z and y are.”
Sam then says “I don’t know what x and y are.”
Pam then says “I don’t know what = and y are.”
Sam then says “I now know z and y.”

Suppose the sum is 5. What are z and y? Explain your answer.

16
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7.

For APPLICANTS IN { COMPUTER SCIENCE

COMPUTER SCIENCE & PHILOSOPHY } ONLY.

A finite automaton is a mathematical model of a simple computing device. A small
finite automaton is illustrated below.

A finite automaton has some finite number of states; the above automaton has three
states, labelled sg, s; and s,. The initial state, sg, is indicated with an incoming arrow.
The automaton receives inputs (e.g. via button presses), which might cause it to change
state. In the example, the inputs are a and b. The state changes are illustrated by
arrows; for example, if the automaton is in state s; and it receives input b, it changes
to state sg; if it is in state s and receives either input, it remains in state sy. (For each
state, there is precisely one out-going arrow for each input.)

Some of the states are defined to be accepting states; in the example, just s; is defined
to be an accepting state, represented by the double circle. A word is a sequence of inputs.
The automaton accepts a word w if that sequence of inputs leads to an accepting state
from the initial state. For example, the above automaton accepts the word aba.

(i) Write down a description of the set of words accepted by the above automaton. A
clear but informal description will suffice.

(ii) Suppose we alter the above automaton by swapping accepting and non-accepting
states; i.e. we make sy and s, accepting, and make s; non-accepting. Write down
a description of the set of words accepted by this new automaton. Again, a clear
but informal description will suffice.

(iii) Draw an automaton that accepts all words containing an even number (possibly
zero) of a’s and any number of b’s (and no other words).

(iv) Now draw an automaton that accepts all words containing an even number of a’s
or an odd number of b’s (and no other words).

Let a™ represent n consecutive a’s. Let L be the set of all words of the form a™b"
where n = 0,1,2,...; i.e. all words composed of some number of a’s followed by the
same number of b’s. We will show that no finite automaton accepts precisely this set of
words.

18



(v) Suppose a particular finite automaton A does accept precisely the words in L.
Show that if 7 # j then the words a’ and o/ must lead to different states of A.

Hence show that this leads to a contradiction.

End of last question
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