
SOLUTIONS FOR ADMISSIONS TEST IN
MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS

WEDNESDAY 03 NOVEMBER 2021

Mark Scheme:
Each part of Question 1 is worth 4 marks which are awarded solely for the correct answer.
Each of Questions 2–7 is worth 15 marks

1

A Connect each point to the centre of the circle to split the shape into 12 isosceles triangles, each
with angle 30◦ at the centre. Then the area of each triangle is 1

2
× 1 × 1 × sin 30◦ = 1

4
, and

there are 12 triangles, for a total area of 3.

= 12 × 30◦

1

1

The answer is (e)

B The integral is

∫ a

0

√
x+ x2 dx =

∫ a

0

x1/2 + x2 dx =

[

2

3
x3/2 +

1

3
x3

]a

0

=
2

3
a3/2 +

1

3
a3.

So we have 2a3/2 + a3 = 15. This factorises as (a3/2 − 3)(a3/2 + 5) = 0. Since a > 0 we want
a3/2 > 0, so it’s 3, so a = 32/3.
The answer is (c)

C The gradient at p is ep and so the tangent is y = ep(x− p) + ep. This crosses the x-axis when
ep(a−p)+ep = 0 which happens if a = p−1. Similarly b = q−1 so p−a = q−b (they’re both 1).

a = p− 1 b = q − 1

(p, ep)

(q, eq)

The answer is (c)



D The intersection point is at ex = 1− ex which happens when 2ex = 1, that is x = − ln 2 < 0.

The area has reflectional symmetry in the line y = 1

2
so we want

2

∫ 0

− ln 2

ex − 1

2
dx = 2

[

ex − x

2

]0

− ln 2

= 2

(

(1)−
(

1

2
+

ln 2

2

))

= 1− ln 2

The answer is (b)

E In order to make the vector

(

10

8

)

we would need a

(

1

1

)

+b

(

3

2

)

=

(

10

8

)

where a is the number

of times we pick

(

1

1

)

and b is the number of times we pick

(

3

2

)

.

Since we have six vectors, a + b = 6. Solving the simultaneous equations a + 3b = 10 and
a + 2b = 8, we get a = 4 and b = 2, and we can check that a + b = 6 for this solution! So

we want exactly two of the six vectors to be

(

3

2

)

. There are 6C2 = 15 ways that this could

happen, each with probability
1

64
, so the answer is

15

64
.

The answer is (c)

F The tangent at a is y = (3a2 − 3)(x− a) + (a3 − 3a), which passes through (2, 0) if and only if
0 = (3a2 − 3)(2− a) + (a3 − 3a). This simplifies to 2a3 − 6a2 + 6 = 0. The left-hand side is a
cubic in a and we’d like to know how many roots it has.

The turning points of 2a3 − 6a2 + 6 are at a = 0 and a = 2, where the value of the cubic is
6 and −2 respectively. So this cubic starts negative, rises to a positive local maximum, then
decreases to a negative local minimum before rising again. There are therefore three roots for
this cubic, so three values of a for which the tangent to the original cubic passes through the
point (2, 0).
The answer is (d)



G We can use the fact that sin2(90◦ −n) = cos2(n) for any n, and sin2 x+cos2 x = 1. So we have
sin2 1◦ + sin2 89◦ = 1 and sin2 2◦ + sin2 88◦ = 1 and so on up to sin2 44◦ + sin2 46◦ = 1. We also
have sin2 45◦ = 1

2
and sin2 90◦ = 1 for a total of 451

2
.

The answer is (d)

H The function inside the brackets is 6 sin2 x− 8 sin x+3 which is a quadratic for sin x. We could
therefore consider the quadratic 6u2 − 8u + 3 for −1 ≤ u ≤ 1. Complete the square to write

this as 6
(

u− 2

3

)2
+ 1

3
. This reaches a minimum value when u = 2

3
. For u = sin x in the range

0 ≤ x ≤ 360◦, this happens for two values of x both in 0 < x < 180◦. The value there is
log2

(

1

3

)

< 0. Only one of the graphs reaches a negative minimum value twice in that range.
The answer is (a)

I Let’s call the product of the first n terms bn. Then we have bn = anbn−1 (that’s how the product
works). We also have the definition of an to interpret; it’s one more than the previous product,
so an = bn−1 + 1. We can use this to eliminate bn and bn−1 from the previous equation, to get
an+1 − 1 = an(an − 1). Adjust the subscripts and rearrange for an = an−1(an−1 − 1) + 1.
The answer is (b)

J We must have |AB| = |BC| so
√

(b− a)2 + (c− b)2 =
√

(c− b)2 + (d− c)2.

We must also have |BC| = |CD| so
√

(c− b)2 + (d− c)2 =
√

(d− c)2 + (a− d)2.

These conditions are equivalent to (b− a)2 = (d− c)2 and (c− b)2 = (a− d)2 respectively.

Using the difference of two squares, the first is equivalent to (a− b+ c− d)(a− b− c+ d) = 0
and the second is equivalent to (a− b+ c− d)(a+ b− c− d) = 0.

In each case, we can’t have both brackets equal to zero because c ̸= d and b ̸= c because the
numbers are distinct. So either a−b+c−d = 0 or both of a−b−c+d = 0 and a+b−c−d = 0.
That second case would imply that a−c = 0, but the numbers are distinct so that’s impossible.
So we’re left with just the case that a− b+ c−d = 0. We can also check that CD = DA in this
case, because

√

(d− c)2 + (a− d)2 =
√

(a− d)2 + (b− a)2 rearranges to (d − c)2 = (b − a)2

which is one of the equations we already had.
The answer is (d)



2

(i) Setting x = 1

2
in the given expression for ln(1− x) gives

ln

(

1

2

)

= −1

2
− (1/2)2

2
− (1/2)3

3
− (1/2)4

4
− . . . .

Then note that ln(1/2) = − ln 2 to get

ln 2 =
1

2
+

1

2× 22
+

1

3× 23
+

1

4× 24
+ . . . .

2 marks

(ii) We have

ln 2 =
1

2
+

1

2× 22
+

1

3× 23
+

1

4× 24
+ . . .

<
1

2
+

1

2× 22
+

1

3× 23
+

1

3× 24
+

1

3× 25
+

1

3× 26
+ . . .

using the given inequality on each term after the first three terms. This sum is

1

2
+

1

8
+

1

3× 23

(

1 +
1

2
+

1

22
+ . . .

)

and the sum inside the brackets is the sum of the terms of a geometric progression, so this is

1

2
+

1

8
+

1

3× 23
(2) =

1

2
+

1

8
+

1

12
=

17

24
.

So ln 2 <
17

24
. Also note that the terms are all positive, so

ln 2 >
1

2
+

1

2× 22
+

1

3× 23
=

16

24

We’ve proved that
16

24
< ln 2 <

17

24
. So k = 16. 4 marks

(iii) Setting x = −1

2
in the given expression for ln(1− x) gives

ln

(

3

2

)

=
1

2
− 1

2× 22
+

1

3× 23
− 1

4× 24
+ . . . .

Now, using the fact that ln 3 = ln(3/2) + ln 2, we can add the expression for ln 2 found in part
(i) to the expression we’ve just found for ln(3/2) to get

ln 3 = 1 +
1

3× 22
+

1

5× 24
+

1

7× 26
+ . . . .

2 marks



(iv) In a similar way to part (ii), we can use the fact that 1/(7 × 26) < 1/(5 × 26), 1/(9 × 28) <
1/(5× 28) and so on to write

ln 3 <1 +
1

3× 22
+

1

5× 24
+

1

5× 26
+

1

5× 28
+ . . .

=1 +
1

3× 22
+

1

5× 24

(

1 +
1

4
+

1

42
+ . . .

)

=1 +
1

12
+

1

80

(

4

3

)

=
11

10

so ln 3 <
11

10
. Also note that the terms are all positive, so

ln 3 > 1 +
1

3× 22
=

13

12

4 marks

(v) Take logarithms base e. We’re asked to compare 17 ln 3 against 13 ln 4 (ln x is an increasing
function of x so it’s sufficient to compare these).

We know that 17 ln 3 >
17× 13

12
and that 13 ln 4 = 26 ln 2 <

26× 17

24
=

13× 17

12
.

So putting it all together, 13 ln 4 <
17× 13

12
< 17 ln 3. That means that 413 < 317.

3 marks



3
Different alternative solutions are indicated with (Alt1), (Alt2), and so on.

(i) The value at x = 0 is 0 so p = 0. This is a turning point so p′(0) = 0.

(Alt1) The last two coefficients are zero so p(x) = x2q(x).

(Alt2) It’s a repeated root, so x must be a factor at least twice. 3 marks

(ii) r(x) = (x − a)2q(x) where q(x) is a polynomial, or equivalently r(x) = (x − a)2q(x − a)). If
we translate the graph of this polynomial a units to the left then we get a polynomial with
turning point at (0, 0), like in (i). So translate that a units to the right to get an expression
for this polynomial. 2 marks

(iii) (a) There must be a factor of (x − a)2 by part (ii), and similarly there must be a factor
of (x + a)2. The function f(x) is a polynomial of degree 4, so we must have f(x) =
A(x− a)2(x+ a)2. The coefficient A could be any real number. 3 marks

(b) Reflection in the y-axis. We can check that f(−x) = f(x) by working out

f(−x) = A(−x− a)2(−x+ a)2 = A(x+ a)2(x− a)2 = f(x).

2 marks

(c) The third turning point must be at x = 0 because of the symmetry we found in the previous
part. If it wasn’t at x = 0 then there would be a fourth turning point symmetrically
opposite the y-axis, but a degree 4 polynomial can only have three turning points.

1 mark

(iv) (Alt1) Yes, start with A(x − 1)2(x + 1)2 from part (iii), which had turning points at (−1, 0)
and (1, 0) and (0, A). Then translate one to the right and set A = 3 to get 3x2(x− 2)2.

(Alt2) Or start with part (i) and write p(x) = x2(ax2 + bx + c). Then use the information
that the value at x = 2 is zero, the information that there’s a turning point at x = 1, and the
information that the value there is 3, to solve for a = 3, b = −12, c = 12. Check that there
really is a turning point at x = 2. 2 marks

(v) No. If we had such a polynomial, then we could translate it 21

2
units left and 6 units down so

that it had turning points at (±3

2
, 0). Then part (iii) applies, but the third turning point is not

at x = 0, it’s at x = −1

2
. 2 marks



4
Different alternative solutions are indicated with (Alt1), (Alt2), and so on.

(i) (Alt1) The slice of cake is a rectangle below y plus a triangle above, with area

xy +
(k − y)x

2
=

xk

2
+

xy

2
=

x(k + y)

2

(Alt2) Quote the area of a trapezium.

Checking, when x = 1 and y = 1 and k = 1, this gives 1× 2/2 = 1. 3 marks

(ii) We could instead take, for example, x = 4

3
and y = 1

2
. Anything with x(y + 1) = 2 works,

provided that 0 ≤ x ≤ 2 and 0 ≤ y ≤ 2. 1 mark

(iii) We would need 0 ≤ k ≤ 2 for the point to lie on the side of the cake.

(Alt1) We have Area = 1 so x(k + y) = 2. Let’s use the inequalities for k.

❼ k ≥ 0 so 2 = x(k + y) ≥ x(0 + y) as x ≥ 0. That’s xy ≤ 2.

❼ k ≤ 2 so 2 = x(k + y) ≤ x(2 + y). That’s 2 ≤ x(2 + y).

(Alt2) Rearrange Area = 1 for k to get k = 2

x
− y.

❼ k ≥ 0 so
2

x
− y ≥ 0 so 2− xy ≥ 0 as x ≥ 0.

❼ k ≤ 2 so
2

x
− y ≤ 2 so 2− xy ≤ 2x as x ≥ 0.

3 marks

(iv) The first inequality describes a region with boundary xy = 2. This curve crosses y = 2 at x = 1
and crosses x = 2 at y = 1. It does not cross the other sides of the cake.

The second inequality describes a region with boundary x(y+2) = 2. This curve crosses y = 2
at x = 1

2
and crosses y = 0 at x = 1. It does not cross the other sides of the cake. The region

R looks like this:

(

1

2
, 2
)

(1, 2)

(2, 1)

(1, 0)

R

3 marks



(v) In this case

(x, y)

(m, 2)

(x, 0)

Repeating the steps above for this new case, the area of the piece of cake will be

xy +m(2− y) +
(x−m)(2− y)

2
= xy +

(2− y)(x+m)

2
.

If this is 1 then 2xy + (2− y)(x+m) = 2. Like before, we need 0 ≤ m ≤ 2.

(Alt1)

❼ 2 = 2xy + (2− y)(x+m) ≥ 2xy + (2− y)x so 2 ≥ x(2 + y).

❼ 2 = 2xy + (2− y)(x+m) ≤ 2xy + (2− y)(x+ 2) so 0 ≤ xy + 2x− 2y + 2 which we could

instead write as y(2− x) ≤ 2(x+ 1) or even y ≤ 6

2− x
− 2 if x ̸= 2.

(Alt2) Rearrange the Area = 1 statement for m =
(2− 2xy)

2− y
−x and use 0 ≤ m ≤ 2 to get the

same inequalities.

The region this time looks like this:

(

1

2
, 2
)

(1, 0)

(0, 1)

R

5 marks
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(i) We have
f(3) = 1 The only possibility is (1, 1, 1)
f(4) = 0 There are no triangular triples with perimeter 4.
f(5) = 3 The possibilities are (1, 2, 2), (2, 1, 2), or (2, 2, 1), which count as distinct.
f(6) = 1 The only possibility is (2, 2, 2)

2 marks

(ii) Suppose a ≤ b ≤ c. Then we have a+ b > c. We need to check that (a+1)+ (b+1) > (c+1),
which is true because (a+ 1) + (b+ 1) = a+ b+ 2 > c+ 2 > c+ 1. 1 mark

(iii) Without loss of generality, say x ≤ y ≤ z. First clearly, we can’t have x = 1, as in that case
y ≤ z − 1, as x+ y + z is even, so y and z must have different parity. So x, y, z ≥ 2. We need
to check that (x− 1) + (y− 1) > (z − 1). Since x+ y > z, we have (x− 1) + (y− 1) ≥ (z − 1).
If this holds with equality, we have (x + y + z − 2) = 2z − 1. However, the LHS is even and
the RHS is odd, so this can’t hold with equality.

3 marks

(iv) Given any triangular triple (a, b, c) such that a + b + c = 2k − 3, (a + 1, b + 1, c + 1) is a
triangular triple with (a + 1) + (b + 1) + (c + 1) = 2k by part (ii). Likewise, for any triple
(x, y, z) with x + y + z = 2k, by part (iii) (x − 1, y − 1, z − 1) is a triangular triple with
(x− 1) + (y − 1) + (z − 1) = 2k − 3. Thus these triples are in one-to-one correspondence, and
so there’s the same number of each f(2k − 3) = f(2k).

2 marks

(v) (a) We have that a + b > c if and only if a + b + c > 2c. Since the left-hand side is 2S, this
happens if and only if c < S. Likewise, a+ c > b if and only if b < S and b+ c > a if and
only if a < S.

We should perhaps also check that given a < S and b < S and c < S and a+ b+ c = 2S,
then all of (a, b, c) are positive numbers. This is true because since b < S and c < S, we
have b+ c < 2S. Since 2S = a+ b+ c this means that a > 0. and similarly for the others.

2 marks

(b) Note that a and b and c all have to be between 2 and S − 1 inclusive by parts (iii) and
(v)(a). We have c = 2S − a − b and c ≤ S − 1, so 2S − a − b ≤ S − 1, which we can
rearrange for S − a+1 ≤ b. Remember that b ≤ S − 1. So for a given value of a, we have
exactly (S − 1)− (S − a) = a− 1 possible values of b, and then c is uniquely determined
by a+ b+ c = 2S.

So the number of triangular triples is given by

f(P ) =
S−1
∑

a=2

(a− 1) =
S−2
∑

a=1

a =
(S − 2)(S − 1)

2
.

4 marks

(vi) We know that f(21) = f(24) = 11·10

2
= 55.

1 mark
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(i) (a) The third smallest entry must be in one of the cells (2, 1), (3, 1), (1, 2), or (1, 3).
1 mark

(b) The number in cell (i, j) is greater than or equal to all numbers in the rectangle from
(1, 1) to (i, j). So the kth smallest number can only be in cell (i, j) if ij ≤ k. Conversely,
if ij ≤ k then the kth smallest number may be in cell (i, j), because the ij elements in the
rectangle are smaller, and then:

❼ if i > 1 there could be precisely k− ij more numbers, in the first row in columns j+1
onwards, which are smaller than the number at (i, j).

❼ if i = 1 there could be precisely k − ij more numbers, in the first column in row 2
onwards, which are smaller than the number at (i, j).

3 marks

(ii) First check the element in the top-right cell. If it’s equal to y then we’re done. Otherwise, if it’s
bigger than y then everything in the right-most column is larger than y and can be eliminated.
On the other hand, if it’s less than y, then everything in the top-most row must be smaller
than y and can be eliminated. Repeat this process. After m + n− 1 inspections, we’ve either
found y or eliminated all the rows and columns, in which case y does not appear in the table.
(Other procedures work, e.g. start at the bottom-left corner). 4 marks

(iii)

A: B: C:
33 92 46 24
25 26 37 8
49 40 81 22

→
24 33 46 92
8 25 26 37
22 40 49 81

→
8 25 26 37
22 33 46 81
24 40 49 92

2 marks

(iv) Obviously the columns are sorted because of how C is made from B.

Consider cell (i, j) of C and compare it with cell (i, k) with k < j, in the same row.

The first i numbers in column j of C are all smaller than or equal to the element in cell (i, j)
because the column is sorted. Each of those i numbers came from table B, where it was bigger
than some element of column k, because the rows of B were sorted.

In table C those elements are still in column k and at least one of them must be in row r1 for
some r1 ≥ i (there are i of them so they can’t all be in the top i − 1 rows). Write r2 for the
row of the corresponding element in column j of C which was in the same row of B as this
element.

The element (i, j) is bigger or equal to (s, j) (same column), which is bigger than (r, k) (was
in the same row of B), which is bigger or equal to the cell (i, k) (same column). So we’re done.

5 marks



7
Different alternative solutions are indicated with (Alt1), (Alt2), and so on.

(i) (Alt1) The function f is 1 exactly when at least one of its inputs is 1 and at least one of its
inputs is 0.

(Alt2) The function f is 1 exactly when the maximum of the inputs is 1 and the minimum is
zero.

(Alt3) The function f is 1 if and only if not all the inputs are the same. 1 mark

(ii) (a) majority(x1, x2) = min(x1, x2). Other expressions are possible. 1 mark

(b) majority(x1, x2, x3) = max(min(x1, x2),min(x2, x3),min(x3, x1)). Other expressions are pos-
sible. 2 marks

(iii) There are 6 possible Boolean functions of two variables that can be represented using only
majority functions with 3 inputs. Other than max(x1, x2), they are:

(a) The constant 0 function: majority(0, 0, 0).

(b) The function that takes the same value as x1: majority(x1, x1, 0) or majority(x1, x1, x1)

(c) The function that takes the same value as x2: majority(x2, x2, 0) or majority(x2, x2, x2)

(d) The function min(x1, x2): majority(x1, x2, 0).

(e) The constant 1 function: majority(1, 1, 1).

Other expressions are possible for these functions. 4 marks

(iv) (Alt1) The function xor, given by g(0, 0) = g(1, 1) = 0 and g(0, 1) = g(1, 0) = 1 cannot be
represented using composition of majority functions.

This is because increasing an input of majority can only increase the output if it changes at all
(and this is also true when you combine majority functions together). But xor doesn’t obey this
property, as g(0, 1) = 1, but g(1, 1) = 0.

(Alt2) There are nine others, including things like g(x1, x2) = flip(x1) or the function with
g(0, 0) = 1 but zero otherwise.

3 marks

(v) (a) Yes, majority(x1, x2, x3, x4) ≡ majority(z1, z2, z3, z4, 1). Note that if at least three xi are 1,
then at least 2 zi are 1. Likewise, if at most 2 xi are 1, then at most 1 of the zi is 1.

2 marks

(b) No, because there are x1 = 1, x2 = x3 = x4 = 0 and x1 = x2 = x3 = x4 = 0 both yield
z1 = z2 = z3 = z4 = 0. However, parity(1, 0, 0, 0) = 1 and parity(0, 0, 0, 0) = 0, and for any
g, g(0, 0, 0, 0) is either 0 or 1. 2 marks


