

**SOLUTIONS FOR ADMISSIONS TEST IN
MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS
WEDNESDAY 03 NOVEMBER 2021**

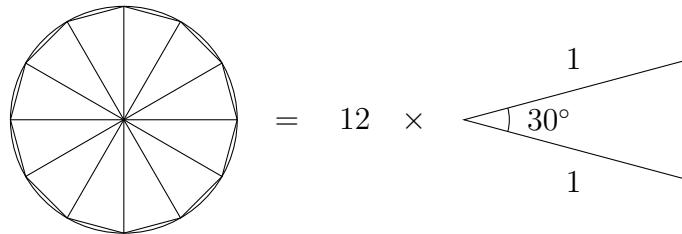
Mark Scheme:

Each part of Question 1 is worth 4 marks which are awarded solely for the correct answer.

Each of Questions 2–7 is worth 15 marks

1

A Connect each point to the centre of the circle to split the shape into 12 isosceles triangles, each with angle 30° at the centre. Then the area of each triangle is $\frac{1}{2} \times 1 \times 1 \times \sin 30^\circ = \frac{1}{4}$, and there are 12 triangles, for a total area of 3.



The answer is (e)

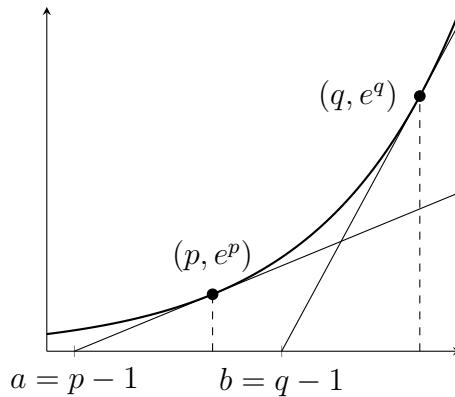
B The integral is

$$\int_0^a \sqrt{x} + x^2 \, dx = \int_0^a x^{1/2} + x^2 \, dx = \left[\frac{2}{3}x^{3/2} + \frac{1}{3}x^3 \right]_0^a = \frac{2}{3}a^{3/2} + \frac{1}{3}a^3.$$

So we have $2a^{3/2} + a^3 = 15$. This factorises as $(a^{3/2} - 3)(a^{3/2} + 5) = 0$. Since $a > 0$ we want $a^{3/2} > 0$, so it's 3, so $a = 3^{2/3}$.

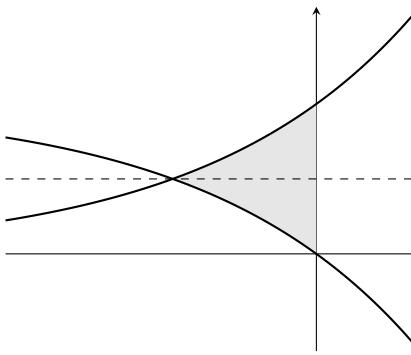
The answer is (c)

C The gradient at p is e^p and so the tangent is $y = e^p(x - p) + e^p$. This crosses the x -axis when $e^p(x - p) + e^p = 0$ which happens if $x = p - 1$. Similarly $b = q - 1$ so $p - a = q - b$ (they're both 1).



The answer is (c)

D The intersection point is at $e^x = 1 - e^x$ which happens when $2e^x = 1$, that is $x = -\ln 2 < 0$.



The area has reflectional symmetry in the line $y = \frac{1}{2}$ so we want

$$2 \int_{-\ln 2}^0 e^x - \frac{1}{2} dx = 2 \left[e^x - \frac{x}{2} \right]_{-\ln 2}^0 = 2 \left((1) - \left(\frac{1}{2} + \frac{\ln 2}{2} \right) \right) = 1 - \ln 2$$

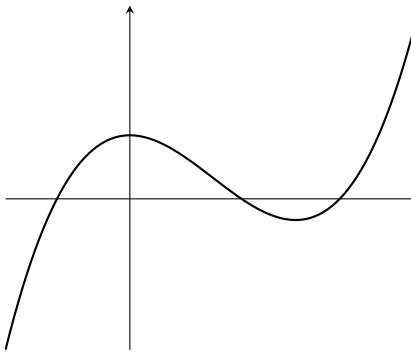
The answer is (b)

E In order to make the vector $\begin{pmatrix} 10 \\ 8 \end{pmatrix}$ we would need $a \begin{pmatrix} 1 \\ 1 \end{pmatrix} + b \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 10 \\ 8 \end{pmatrix}$ where a is the number of times we pick $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and b is the number of times we pick $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$.

Since we have six vectors, $a + b = 6$. Solving the simultaneous equations $a + 3b = 10$ and $a + 2b = 8$, we get $a = 4$ and $b = 2$, and we can check that $a + b = 6$ for this solution! So we want exactly two of the six vectors to be $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$. There are ${}^6C_2 = 15$ ways that this could happen, each with probability $\frac{1}{64}$, so the answer is $\frac{15}{64}$.

The answer is (c)

F The tangent at a is $y = (3a^2 - 3)(x - a) + (a^3 - 3a)$, which passes through $(2, 0)$ if and only if $0 = (3a^2 - 3)(2 - a) + (a^3 - 3a)$. This simplifies to $2a^3 - 6a^2 + 6 = 0$. The left-hand side is a cubic in a and we'd like to know how many roots it has.



The turning points of $2a^3 - 6a^2 + 6$ are at $a = 0$ and $a = 2$, where the value of the cubic is 6 and -2 respectively. So this cubic starts negative, rises to a positive local maximum, then decreases to a negative local minimum before rising again. There are therefore three roots for this cubic, so three values of a for which the tangent to the original cubic passes through the point $(2, 0)$.

The answer is (d)

G We can use the fact that $\sin^2(90^\circ - n) = \cos^2(n)$ for any n , and $\sin^2 x + \cos^2 x = 1$. So we have $\sin^2 1^\circ + \sin^2 89^\circ = 1$ and $\sin^2 2^\circ + \sin^2 88^\circ = 1$ and so on up to $\sin^2 44^\circ + \sin^2 46^\circ = 1$. We also have $\sin^2 45^\circ = \frac{1}{2}$ and $\sin^2 90^\circ = 1$ for a total of $45\frac{1}{2}$.

The answer is (d)

H The function inside the brackets is $6\sin^2 x - 8\sin x + 3$ which is a quadratic for $\sin x$. We could therefore consider the quadratic $6u^2 - 8u + 3$ for $-1 \leq u \leq 1$. Complete the square to write this as $6(u - \frac{2}{3})^2 + \frac{1}{3}$. This reaches a minimum value when $u = \frac{2}{3}$. For $u = \sin x$ in the range $0 \leq x \leq 360^\circ$, this happens for two values of x both in $0 < x < 180^\circ$. The value there is $\log_2(\frac{1}{3}) < 0$. Only one of the graphs reaches a negative minimum value twice in that range.

The answer is (a)

I Let's call the product of the first n terms b_n . Then we have $b_n = a_n b_{n-1}$ (that's how the product works). We also have the definition of a_n to interpret; it's one more than the previous product, so $a_n = b_{n-1} + 1$. We can use this to eliminate b_n and b_{n-1} from the previous equation, to get $a_{n+1} - 1 = a_n(a_n - 1)$. Adjust the subscripts and rearrange for $a_n = a_{n-1}(a_{n-1} - 1) + 1$.

The answer is (b)

J We must have $|AB| = |BC|$ so $\sqrt{(b-a)^2 + (c-b)^2} = \sqrt{(c-b)^2 + (d-c)^2}$.

We must also have $|BC| = |CD|$ so $\sqrt{(c-b)^2 + (d-c)^2} = \sqrt{(d-c)^2 + (a-d)^2}$.

These conditions are equivalent to $(b-a)^2 = (d-c)^2$ and $(c-b)^2 = (a-d)^2$ respectively.

Using the difference of two squares, the first is equivalent to $(a-b+c-d)(a-b-c+d) = 0$ and the second is equivalent to $(a-b+c-d)(a+b-c-d) = 0$.

In each case, we can't have both brackets equal to zero because $c \neq d$ and $b \neq c$ because the numbers are distinct. So either $a-b+c-d = 0$ or both of $a-b-c+d = 0$ and $a+b-c-d = 0$. That second case would imply that $a-c = 0$, but the numbers are distinct so that's impossible. So we're left with just the case that $a-b+c-d = 0$. We can also check that $CD = DA$ in this case, because $\sqrt{(d-c)^2 + (a-d)^2} = \sqrt{(a-d)^2 + (b-a)^2}$ rearranges to $(d-c)^2 = (b-a)^2$ which is one of the equations we already had.

The answer is (d)

(i) Setting $x = \frac{1}{2}$ in the given expression for $\ln(1 - x)$ gives

$$\ln\left(\frac{1}{2}\right) = -\frac{1}{2} - \frac{(1/2)^2}{2} - \frac{(1/2)^3}{3} - \frac{(1/2)^4}{4} - \dots$$

Then note that $\ln(1/2) = -\ln 2$ to get

$$\ln 2 = \frac{1}{2} + \frac{1}{2 \times 2^2} + \frac{1}{3 \times 2^3} + \frac{1}{4 \times 2^4} + \dots$$

2 marks

(ii) We have

$$\begin{aligned} \ln 2 &= \frac{1}{2} + \frac{1}{2 \times 2^2} + \frac{1}{3 \times 2^3} + \frac{1}{4 \times 2^4} + \dots \\ &< \frac{1}{2} + \frac{1}{2 \times 2^2} + \frac{1}{3 \times 2^3} + \frac{1}{3 \times 2^4} + \frac{1}{3 \times 2^5} + \frac{1}{3 \times 2^6} + \dots \end{aligned}$$

using the given inequality on each term after the first three terms. This sum is

$$\frac{1}{2} + \frac{1}{8} + \frac{1}{3 \times 2^3} \left(1 + \frac{1}{2} + \frac{1}{2^2} + \dots\right)$$

and the sum inside the brackets is the sum of the terms of a geometric progression, so this is

$$\frac{1}{2} + \frac{1}{8} + \frac{1}{3 \times 2^3} (2) = \frac{1}{2} + \frac{1}{8} + \frac{1}{12} = \frac{17}{24}.$$

So $\ln 2 < \frac{17}{24}$. Also note that the terms are all positive, so

$$\ln 2 > \frac{1}{2} + \frac{1}{2 \times 2^2} + \frac{1}{3 \times 2^3} = \frac{16}{24}$$

We've proved that $\frac{16}{24} < \ln 2 < \frac{17}{24}$. So $k = 16$.

4 marks

(iii) Setting $x = -\frac{1}{2}$ in the given expression for $\ln(1 - x)$ gives

$$\ln\left(\frac{3}{2}\right) = \frac{1}{2} - \frac{1}{2 \times 2^2} + \frac{1}{3 \times 2^3} - \frac{1}{4 \times 2^4} + \dots$$

Now, using the fact that $\ln 3 = \ln(3/2) + \ln 2$, we can add the expression for $\ln 2$ found in part (i) to the expression we've just found for $\ln(3/2)$ to get

$$\ln 3 = 1 + \frac{1}{3 \times 2^2} + \frac{1}{5 \times 2^4} + \frac{1}{7 \times 2^6} + \dots$$

2 marks

(iv) In a similar way to part (ii), we can use the fact that $1/(7 \times 2^6) < 1/(5 \times 2^6)$, $1/(9 \times 2^8) < 1/(5 \times 2^8)$ and so on to write

$$\begin{aligned}
 \ln 3 &< 1 + \frac{1}{3 \times 2^2} + \frac{1}{5 \times 2^4} + \frac{1}{5 \times 2^6} + \frac{1}{5 \times 2^8} + \dots \\
 &= 1 + \frac{1}{3 \times 2^2} + \frac{1}{5 \times 2^4} \left(1 + \frac{1}{4} + \frac{1}{4^2} + \dots \right) \\
 &= 1 + \frac{1}{12} + \frac{1}{80} \left(\frac{4}{3} \right) \\
 &= \frac{11}{10}
 \end{aligned}$$

so $\ln 3 < \frac{11}{10}$. Also note that the terms are all positive, so

$$\ln 3 > 1 + \frac{1}{3 \times 2^2} = \frac{13}{12}$$

4 marks

(v) Take logarithms base e . We're asked to compare $17 \ln 3$ against $13 \ln 4$ ($\ln x$ is an increasing function of x so it's sufficient to compare these).

We know that $17 \ln 3 > \frac{17 \times 13}{12}$ and that $13 \ln 4 = 26 \ln 2 < \frac{26 \times 17}{24} = \frac{13 \times 17}{12}$.

So putting it all together, $13 \ln 4 < \frac{17 \times 13}{12} < 17 \ln 3$. That means that $4^{13} < 3^{17}$.

3 marks

3

Different alternative solutions are indicated with (Alt1), (Alt2), and so on.

(i) The value at $x = 0$ is 0 so $p = 0$. This is a turning point so $p'(0) = 0$.

(Alt1) The last two coefficients are zero so $p(x) = x^2q(x)$.

(Alt2) It's a repeated root, so x must be a factor at least twice. **3 marks**

(ii) $r(x) = (x - a)^2q(x)$ where $q(x)$ is a polynomial, or equivalently $r(x) = (x - a)^2q(x - a)$. If we translate the graph of this polynomial a units to the left then we get a polynomial with turning point at $(0, 0)$, like in (i). So translate that a units to the right to get an expression for this polynomial. **2 marks**

(iii) (a) There must be a factor of $(x - a)^2$ by part (ii), and similarly there must be a factor of $(x + a)^2$. The function $f(x)$ is a polynomial of degree 4, so we must have $f(x) = A(x - a)^2(x + a)^2$. The coefficient A could be any real number. **3 marks**

(b) Reflection in the y -axis. We can check that $f(-x) = f(x)$ by working out

$$f(-x) = A(-x - a)^2(-x + a)^2 = A(x + a)^2(x - a)^2 = f(x).$$

2 marks

(c) The third turning point must be at $x = 0$ because of the symmetry we found in the previous part. If it wasn't at $x = 0$ then there would be a fourth turning point symmetrically opposite the y -axis, but a degree 4 polynomial can only have three turning points. **1 mark**

(iv) (Alt1) Yes, start with $A(x - 1)^2(x + 1)^2$ from part (iii), which had turning points at $(-1, 0)$ and $(1, 0)$ and $(0, A)$. Then translate one to the right and set $A = 3$ to get $3x^2(x - 2)^2$.

(Alt2) Or start with part (i) and write $p(x) = x^2(ax^2 + bx + c)$. Then use the information that the value at $x = 2$ is zero, the information that there's a turning point at $x = 1$, and the information that the value there is 3, to solve for $a = 3$, $b = -12$, $c = 12$. Check that there really is a turning point at $x = 2$. **2 marks**

(v) No. If we had such a polynomial, then we could translate it $2\frac{1}{2}$ units left and 6 units down so that it had turning points at $(\pm\frac{3}{2}, 0)$. Then part (iii) applies, but the third turning point is not at $x = 0$, it's at $x = -\frac{1}{2}$. **2 marks**

Different alternative solutions are indicated with (Alt1), (Alt2), and so on.

(i) (Alt1) The slice of cake is a rectangle below y plus a triangle above, with area

$$xy + \frac{(k-y)x}{2} = \frac{xk}{2} + \frac{xy}{2} = \frac{x(k+y)}{2}$$

(Alt2) Quote the area of a trapezium.

Checking, when $x = 1$ and $y = 1$ and $k = 1$, this gives $1 \times 2/2 = 1$.

3 marks

(ii) We could instead take, for example, $x = \frac{4}{3}$ and $y = \frac{1}{2}$. Anything with $x(y+1) = 2$ works, provided that $0 \leq x \leq 2$ and $0 \leq y \leq 2$. **1 mark**

(iii) We would need $0 \leq k \leq 2$ for the point to lie on the side of the cake.

(Alt1) We have Area = 1 so $x(k+y) = 2$. Let's use the inequalities for k .

- $k \geq 0$ so $2 = x(k+y) \geq x(0+y)$ as $x \geq 0$. That's $xy \leq 2$.
- $k \leq 2$ so $2 = x(k+y) \leq x(2+y)$. That's $2 \leq x(2+y)$.

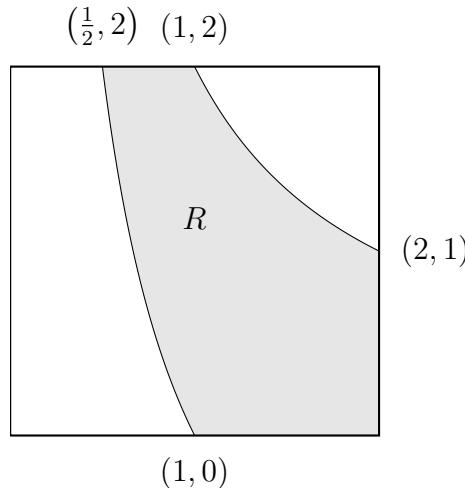
(Alt2) Rearrange Area = 1 for k to get $k = \frac{2}{x} - y$.

- $k \geq 0$ so $\frac{2}{x} - y \geq 0$ so $2 - xy \geq 0$ as $x \geq 0$.
- $k \leq 2$ so $\frac{2}{x} - y \leq 2$ so $2 - xy \leq 2x$ as $x \geq 0$.

3 marks

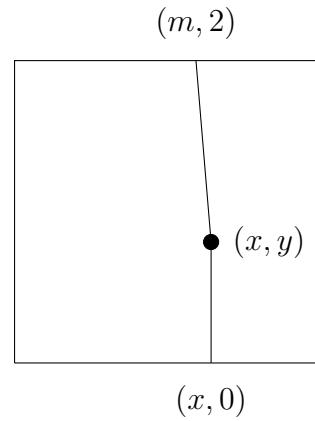
(iv) The first inequality describes a region with boundary $xy = 2$. This curve crosses $y = 2$ at $x = 1$ and crosses $x = 2$ at $y = 1$. It does not cross the other sides of the cake.

The second inequality describes a region with boundary $x(y+2) = 2$. This curve crosses $y = 2$ at $x = \frac{1}{2}$ and crosses $y = 0$ at $x = 1$. It does not cross the other sides of the cake. The region R looks like this:



3 marks

(v) In this case



Repeating the steps above for this new case, the area of the piece of cake will be

$$xy + m(2 - y) + \frac{(x - m)(2 - y)}{2} = xy + \frac{(2 - y)(x + m)}{2}.$$

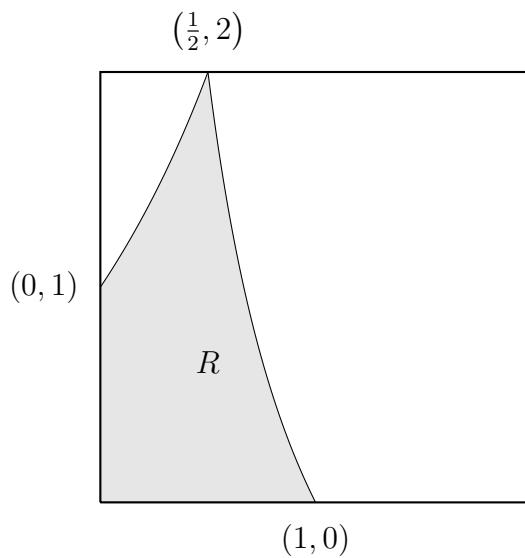
If this is 1 then $2xy + (2 - y)(x + m) = 2$. Like before, we need $0 \leq m \leq 2$.

(Alt1)

- $2 = 2xy + (2 - y)(x + m) \geq 2xy + (2 - y)x$ so $2 \geq x(2 + y)$.
- $2 = 2xy + (2 - y)(x + m) \leq 2xy + (2 - y)(x + 2)$ so $0 \leq xy + 2x - 2y + 2$ which we could instead write as $y(2 - x) \leq 2(x + 1)$ or even $y \leq \frac{6}{2 - x} - 2$ if $x \neq 2$.

(Alt2) Rearrange the $\text{Area} = 1$ statement for $m = \frac{(2 - 2xy)}{2 - y} - x$ and use $0 \leq m \leq 2$ to get the same inequalities.

The region this time looks like this:



5 marks

(i) We have

$f(3) = 1$ The only possibility is $(1, 1, 1)$

$f(4) = 0$ There are no triangular triples with perimeter 4.

$f(5) = 3$ The possibilities are $(1, 2, 2)$, $(2, 1, 2)$, or $(2, 2, 1)$, which count as distinct.

$f(6) = 1$ The only possibility is $(2, 2, 2)$

2 marks

(ii) Suppose $a \leq b \leq c$. Then we have $a + b > c$. We need to check that $(a + 1) + (b + 1) > (c + 1)$, which is true because $(a + 1) + (b + 1) = a + b + 2 > c + 2 > c + 1$. **1 mark**

(iii) Without loss of generality, say $x \leq y \leq z$. First clearly, we can't have $x = 1$, as in that case $y \leq z - 1$, as $x + y + z$ is even, so y and z must have different parity. So $x, y, z \geq 2$. We need to check that $(x - 1) + (y - 1) > (z - 1)$. Since $x + y > z$, we have $(x - 1) + (y - 1) \geq (z - 1)$. If this holds with equality, we have $(x + y + z - 2) = 2z - 1$. However, the LHS is even and the RHS is odd, so this can't hold with equality.

3 marks

(iv) Given any triangular triple (a, b, c) such that $a + b + c = 2k - 3$, $(a + 1, b + 1, c + 1)$ is a triangular triple with $(a + 1) + (b + 1) + (c + 1) = 2k$ by part (ii). Likewise, for any triple (x, y, z) with $x + y + z = 2k$, by part (iii) $(x - 1, y - 1, z - 1)$ is a triangular triple with $(x - 1) + (y - 1) + (z - 1) = 2k - 3$. Thus these triples are in one-to-one correspondence, and so there's the same number of each $f(2k - 3) = f(2k)$.

2 marks

(v) (a) We have that $a + b > c$ if and only if $a + b + c > 2c$. Since the left-hand side is $2S$, this happens if and only if $c < S$. Likewise, $a + c > b$ if and only if $b < S$ and $b + c > a$ if and only if $a < S$.

We should perhaps also check that given $a < S$ and $b < S$ and $c < S$ and $a + b + c = 2S$, then all of (a, b, c) are positive numbers. This is true because since $b < S$ and $c < S$, we have $b + c < 2S$. Since $2S = a + b + c$ this means that $a > 0$. and similarly for the others.

2 marks

(b) Note that a and b and c all have to be between 2 and $S - 1$ inclusive by parts (iii) and (v)(a). We have $c = 2S - a - b$ and $c \leq S - 1$, so $2S - a - b \leq S - 1$, which we can rearrange for $S - a + 1 \leq b$. Remember that $b \leq S - 1$. So for a given value of a , we have exactly $(S - 1) - (S - a) = a - 1$ possible values of b , and then c is uniquely determined by $a + b + c = 2S$.

So the number of triangular triples is given by

$$f(P) = \sum_{a=2}^{S-1} (a - 1) = \sum_{a=1}^{S-2} a = \frac{(S - 2)(S - 1)}{2}.$$

4 marks

(vi) We know that $f(21) = f(24) = \frac{11 \cdot 10}{2} = 55$.

1 mark

(i) (a) The third smallest entry must be in one of the cells $(2, 1)$, $(3, 1)$, $(1, 2)$, or $(1, 3)$.

1 mark

(b) The number in cell (i, j) is greater than or equal to all numbers in the rectangle from $(1, 1)$ to (i, j) . So the k^{th} smallest number can only be in cell (i, j) if $ij \leq k$. Conversely, if $ij \leq k$ then the k^{th} smallest number may be in cell (i, j) , because the ij elements in the rectangle are smaller, and then:

- if $i > 1$ there could be precisely $k - ij$ more numbers, in the first row in columns $j + 1$ onwards, which are smaller than the number at (i, j) .
- if $i = 1$ there could be precisely $k - ij$ more numbers, in the first column in row 2 onwards, which are smaller than the number at (i, j) .

3 marks

(ii) First check the element in the top-right cell. If it's equal to y then we're done. Otherwise, if it's bigger than y then everything in the right-most column is larger than y and can be eliminated. On the other hand, if it's less than y , then everything in the top-most row must be smaller than y and can be eliminated. Repeat this process. After $m + n - 1$ inspections, we've either found y or eliminated all the rows and columns, in which case y does not appear in the table. (Other procedures work, e.g. start at the bottom-left corner). **4 marks**

(iii)

<i>A:</i>			
33	92	46	24
25	26	37	8
49	40	81	22

<i>B:</i>			
24	33	46	92
8	25	26	37
22	40	49	81

<i>C:</i>			
8	25	26	37
22	33	46	81
24	40	49	92

2 marks

(iv) Obviously the columns are sorted because of how *C* is made from *B*.

Consider cell (i, j) of *C* and compare it with cell (i, k) with $k < j$, in the same row.

The first i numbers in column j of *C* are all smaller than or equal to the element in cell (i, j) because the column is sorted. Each of those i numbers came from table *B*, where it was bigger than *some* element of column k , because the rows of *B* were sorted.

In table *C* those elements are still in column k and at least one of them must be in row r_1 for some $r_1 \geq i$ (there are i of them so they can't all be in the top $i - 1$ rows). Write r_2 for the row of the corresponding element in column j of *C* which was in the same row of *B* as this element.

The element (i, j) is bigger or equal to (s, j) (same column), which is bigger than (r, k) (was in the same row of *B*), which is bigger or equal to the cell (i, k) (same column). So we're done.

5 marks

Different alternative solutions are indicated with (Alt1), (Alt2), and so on.

(i) (Alt1) The function f is 1 exactly when at least one of its inputs is 1 *and* at least one of its inputs is 0.

(Alt2) The function f is 1 exactly when the maximum of the inputs is 1 and the minimum is zero.

(Alt3) The function f is 1 if and only if not all the inputs are the same. **1 mark**

(ii) (a) $\text{majority}(x_1, x_2) = \min(x_1, x_2)$. Other expressions are possible. **1 mark**

(b) $\text{majority}(x_1, x_2, x_3) = \max(\min(x_1, x_2), \min(x_2, x_3), \min(x_3, x_1))$. Other expressions are possible. **2 marks**

(iii) There are 6 possible Boolean functions of two variables that can be represented using only **majority** functions with 3 inputs. Other than $\max(x_1, x_2)$, they are:

- The constant 0 function: $\text{majority}(0, 0, 0)$.
- The function that takes the same value as x_1 : $\text{majority}(x_1, x_1, 0)$ or $\text{majority}(x_1, x_1, x_1)$
- The function that takes the same value as x_2 : $\text{majority}(x_2, x_2, 0)$ or $\text{majority}(x_2, x_2, x_2)$
- The function $\min(x_1, x_2)$: $\text{majority}(x_1, x_2, 0)$.
- The constant 1 function: $\text{majority}(1, 1, 1)$.

Other expressions are possible for these functions. **4 marks**

(iv) (Alt1) The function **xor**, given by $g(0, 0) = g(1, 1) = 0$ and $g(0, 1) = g(1, 0) = 1$ cannot be represented using composition of **majority** functions.

This is because increasing an input of **majority** can only increase the output if it changes at all (and this is also true when you combine **majority** functions together). But **xor** doesn't obey this property, as $g(0, 1) = 1$, but $g(1, 1) = 0$.

(Alt2) There are nine others, including things like $g(x_1, x_2) = \text{flip}(x_1)$ or the function with $g(0, 0) = 1$ but zero otherwise. **3 marks**

(v) (a) Yes, $\text{majority}(x_1, x_2, x_3, x_4) \equiv \text{majority}(z_1, z_2, z_3, z_4, 1)$. Note that if at least three x_i are 1, then at least 2 z_i are 1. Likewise, if at most 2 x_i are 1, then at most 1 of the z_i is 1. **2 marks**

(b) No, because there are $x_1 = 1, x_2 = x_3 = x_4 = 0$ and $x_1 = x_2 = x_3 = x_4 = 0$ both yield $z_1 = z_2 = z_3 = z_4 = 0$. However, $\text{parity}(1, 0, 0, 0) = 1$ and $\text{parity}(0, 0, 0, 0) = 0$, and for any g , $g(0, 0, 0, 0)$ is either 0 or 1. **2 marks**