

AS **Mathematics**

MPC2-Pure Core 2 Mark scheme

June 2018

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aga.org.uk

Copyright © 2018 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Key to mark scheme abbreviations

M mark is for method

m or dM mark is dependent on one or more

A M marks and is for method mark is dependent on M or m marks and is for accuracy

B mark is independent of M or m marks and is for method and

accuracy

E mark is for explanation

√or ft or F follow through from previous

follow through from previous incorrect result

CAO correct answer only
CSO correct solution only
AWFW anything which falls within
AWRT anything which rounds to

ACF any correct form AG answer given SC special case OE or equivalent

A2,1 2 or 1 (or 0) accuracy marks –x EE deduct *x* marks for each error

NMS no method shown PI possibly implied

SCA substantially correct approach

c candidate

sf significant figure(s) dp decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Mark	Total	Comment
1(a)	h = 0.25	B1		h = 0.25 OE stated or used
				(PI by <i>x</i> -values 0, 0.25, 0.5, 0.75 OE
				provided no contradiction)
	$f(x) = \sqrt{9 - 16x^3}$			
		M1		$h/2\{f(0)+f(3/4)+2[f(1/4)+f(1/2)]\}$
	$I \approx \frac{h}{2} \{f(0)+f(3/4)+2[f(1/4)+f(1/2)]\}$	1,11		OE summing of areas of the 'trapezia'
	2			M0 if using an incorrect $f(x)$
	$h \sim 1.0$			
	$\frac{h}{2}$ with $\{\}=$			OE Accept 3sf or better evidence for surds
	$\sqrt{9} + \sqrt{2.25} + 2(\sqrt{8.75} + \sqrt{7})$	A1		Can be implied by later <u>correct</u> work
	$\sqrt{9} + \sqrt{2.23} + 2(\sqrt{6.73} + \sqrt{7})$			provided >1 term or a single term
	1.			for I which rounds to 1.96
	$=\frac{h}{2}$ { 3 + 1.5 +2[2.95(8) + 2.64(5)]}			
	$=\frac{h}{2}\{4.5+11.2(07)\}$			
	$(I \approx 0.125 \times 15.7(07))$ (= 1.96(3)			
	I = 1.96 (to 3 sf)	A1	4	CAO Must be 1.96
	1 = 1.90 (10.3 s1)	122	-	SC 4 strips used: Max B0M1A0, 1.98 A1
				SC 4 surps used. Wax buvilAu, 1.98 A1
(b)	Increase the number of ordinates	E 1	1	OE eg Increase the number of strips.
	Total		5	
	NO MISREADS ALLOWED IN THIS QU			
	In the M1 line if brackets missing look for later evidence of correct method before awarding the M1			
	$\sqrt{35}$			
	$\frac{\sqrt{35}}{2}$ is a common OE for $\sqrt{8.75}$			
	\perp			

For guidance, separate trapezia, 0.744(7..) + 0.700(4..) + 0.518(2..)

Q	Solution	Mark	Total	Comment
2(a)	$dy = 3 + \frac{1}{2}$	B2,1		ACF. If not B2 , award B1 for correct
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3 + \frac{3}{2}x^{\frac{1}{2}}$			differentiation of either $x^{3/2}$ or $3x-7$
			2	
(b)(i)	(k =) 13	B 1	1	13
(ii)	At $P(4,k)$ $\frac{dy}{dx} = 3 + \frac{3}{2}(4)^{0.5}$ (= 6)	N/1		Attempt to find c's $\frac{dy}{dx}$ when $x = 4$.
	dx 2	M1		
				M0 if c's answer (a) is a constant
	1	dM1		$m \times m' = -1$ used
	Gradient of normal = $-\frac{1}{6}$	ulvii		$m \times m = -1$ used
	U	A1F	3	ACF only ft on c's non-zero value of k
	Eqn of normal $y-13=-\frac{1}{6}(x-4)$	AIF	3	ie check c's equation is equivalent to
	6			6y+x=4+6k, for c's non-zero value of k
(iii)	When $y = 0, 0, 12 = \frac{1}{2}(x + 4)$	M1		Attempts to find x when $y=0$ in c's <u>linear</u>
	When $y = 0$, $0 - 13 = -\frac{1}{6}(x - 4)$			equation answer to (b)(ii)
	x = 82	A1	2	82
				82 with or without working scores 2/2
	Total		8	
(b)(i)	Condone ' $y=13$ ' unless there is any contradion	otion to 1	2 haina tl	as final value
(0)(1)	Condone y-15 unless there is any contradi	CHOII tO I	oemg u	ic iiiai vaiuc

Q	Solution	Mark	Total	Comment	
3(a)	$(AC^2 =) 6^2 + 10^2 - 2(6)(10)\cos\frac{2\pi}{3}$	M1		RHS of cosine rule used correctly.	
	$AC^2 = 36 + 100 + 60 (=196)$	A1		PI by next line	
	AC = 14 (cm)	A1	3	CAO 14	
(b)(i)	$Arc AB = r\theta$	M1		$r\theta$ used for arc length with	
				$\theta = \frac{4\pi}{3} \text{ or } \frac{2\pi}{3} \text{ or } \frac{\pi}{3} \text{ OE.}$	
				Accept equivalent work in degrees form	
	(2π)	A1		Correct numerical expression which would	
	$=6\times\left(2\pi-\frac{2\pi}{3}\right)$			simplify to 8π eg $6\pi + 6\frac{\pi}{3}$, $12\pi \times \frac{2}{3}$	
	,				
	= 25.13 = 25.1 (cm) (to 3sf)	A1	3	or 25.13 or an AWRT 25.13 AG Must see at least a correct 4sf value	
	23.13 23.1 (cm) (to 331)	211		before the final printed answer 25.1 is	
				stated.	
(ii)	(2π)	M1		A correct numerical expression for the	
	(Area of triangle=) $0.5 \times 6 \times 10 \sin\left(\frac{2\pi}{3}\right)$			area of the triangle. PI by expression	
				simplifying to $\sqrt{675}$ or PI by value 25.9	
				or 26	
	(2π)	M1		A correct numerical expression for the	
	(Area of sector=) $0.5 \times 6^2 \times \left(2\pi - \frac{2\pi}{3}\right)$			area of the sector, which would simplify to	
	,			24π PI by value 75 or 75.4 or 75.3	
	(Area of triangle =) $15\sqrt{3} = 25.9$			Dep on just the relevant one M1 for a	
	, 50 , 50 , 50 , 50	A1		correct value for either area of triangle	
	(Area of sector=) 24π			$(\sqrt{675} \text{ OE simplified or } 26 \text{ or } 25.9 \text{ or}$	
				25.9) or area of sector (24 π or 75.4 or 75 or 75.3). PI by either $\sqrt{675} + 24\pi$	
				OE simplified or final AWRT 101	
			_	-	
	(Area of region=) $26 + 75 = 101 \text{ (cm}^2$)	A1	4 10	CAO 101	
	Total		וו	1	
(a)	$AC^2 = 36 + 100 - 60$ look for later evidence before awarding the 1 st A1 mark				
(b)(i)	$6 \times 2\pi$ = 12.56 12.566 $\times 2 = 25.13 = 25.1 (to 25)$ without any instification for $\sqrt{2}$ access M1A0A0				
	$6 \times \frac{2\pi}{3} = 12.56 \ 12.566 \times 2 = 25.13 = 25.1 \text{ (to 3sf)}$ without any justification for x2 scores M1A0A0				
(b)(i) (b)(ii)	(b)(i)= $8\pi = 25.1$ does NOT score the final A1;= $8\pi = 25.13$ GETS the final A1.				
(0)(11)	Area of triangle = $0.5 \times 6 \times 10 \sin\left(\frac{\pi}{3}\right)$ is M	10 unless	it is supp	orted by a statement that eg sin120=sin60	
	(3)				

(ii) $ (u_{100} =) \ 23 + (100 - 1) d $ $ (u_{100} =) \ 914 $ (iii) $ (u_{100} =) \ 914 $ (iv) $ (u_{100} =) \ 914 $ (va) $ (u_{100} =) \ 914 $ (va	Q	Solution	Mark	Total	Comment	
(iii) Number of terms, $N = 201$ ($\sum_{n=100}^{300} u_n = \frac{201}{2} [914 + 2714]$ Number of terms, $N = 201$ ($\sum_{n=100}^{300} u_n = \frac{201}{2} [914 + 2714]$ Number of terms, $N = 201$ ($\sum_{n=100}^{300} u_n = \frac{201}{2} [914 + 2714]$ Number of terms, $N = 201$ ($\sum_{n=100}^{300} u_n = \frac{201}{2} [2u_{100} + (201 - 1)d]$ used with $\sum_{n=100}^{300} u_n = \frac{364614}{2}$ All $\sum_{n=100}^{300} u_n = \frac{364614}{2}$ All $\sum_{n=100}^{300} u_n = \frac{300}{2} [23 + 2714] - \frac{99}{2} [23 + u_{100} - d]$ (M1) (M1) (M1) (A1) (A1) (A2) (A2) (A3) (A3) (A3) (A3) (A3) (A3) (A3) (A3	4(a)(i)	(d =) 9	B 1	1	9	
(iii) Number of terms, $N = 201$ ($\sum_{n=100}^{300} u_n = \frac{201}{2} [914 + 2714]$ Number of terms, $N = 201$ ($\sum_{n=100}^{300} u_n = \frac{201}{2} [914 + 2714]$ Number of terms, $N = 201$ ($\sum_{n=100}^{300} u_n = \frac{201}{2} [914 + 2714]$ Number of terms, $N = 201$ ($\sum_{n=100}^{300} u_n = \frac{201}{2} [2u_{100} + (201 - 1)d]$ used with $\sum_{n=100}^{300} u_n = \frac{364614}{2}$ All $\sum_{n=100}^{300} u_n = \frac{364614}{2}$ All $\sum_{n=100}^{300} u_n = \frac{300}{2} [23 + 2714] - \frac{99}{2} [23 + u_{100} - d]$ (M1) (M1) (M1) (A1) (A1) (A2) (A2) (A3) (A3) (A3) (A3) (A3) (A3) (A3) (A3	(ii)	$(u_{100} =) 23 + (100 - 1)d$	M1		23 + (100 - 1)d OE; ft on c's answer for	
(iii) Number of terms, $N = 201$ ($\sum_{u=100}^{300} u_u = \frac{201}{2} [914 + 2714]$ MI Either $\frac{201}{2} [u_{100} + 2714]$ or $\frac{201}{2} [2u_{100} + (201 - 1)d]$ used with c 's values for d and u_{100} from parts (a)(i) and (a)(ii). Al. The sum of $\sum_{u=100}^{300} u_u = \sum_{n=1}^{300} u_n = \sum_{n=1}^{3$			A1	2	*	
(iii) Number of terms, $N = 201$ ($1000 \ 10000 \ 10000 \ 10000 \ 10000 \ 10000 \ 10000 \ 10000 \ 10000 \ 10000 \ 10000 \ 10000 \ 10000 \ 10000 \ 10000 \ 10000 \ 100000 \ 100000 \ 100000 \ 1000000 \ 100000000$		$(u_{100} -)$ 914	2.1.1	_		
Content of the series does NOT have a sum to infinity), since -1.5 does not lie between -1 and 1 Content of the first of the content of the conte	(iii)	Number of terms, $N = 201$	B 1		N = 201 stated or used	
(a)(iii) $\sum_{n=100}^{300} u_n = 364614$ (a) (iii) $\sum_{n=100}^{300} u_n = \sum_{n=1}^{300} u_n - \sum_{n=1}^{90} u_n$ (b)(i) $\sum_{n=100}^{300} u_n = 364614$ (a) (iii) $\sum_{n=100}^{300} u_n = \sum_{n=1}^{300} u_n - \sum_{n=1}^{90} u_n$ (b)(i) $\sum_{n=100}^{300} u_n = 364614$ (c) (a) (iii) $\sum_{n=100}^{300} u_n = 364614$ (b)(ii) $\sum_{n=100}^{300} u_n = 364614$ (c) (a) (iii) $\sum_{n=100}^{300} u_n = 364614$ (b)(ii) $24 + 24r^2 = (-57)$ (iii) No, (the series does NOT have a sum to infinity), since -1.5 does not lie between -1 and 1 (a) (iii) $\sum_{n=10}^{300} u_n = \frac{300}{2} \left[2(23) + 299d \right] - \frac{99}{2} \left[2(23) + 98d \right]$ (b)(iii) Accept eg notation $\sum_{n=1}^{300} \sum_{n=1}^{90} r = 1$ (b)(ii) Any value of $r \ge -1$ in (b)(i); scores E0 in (b)(ii). For any value of $r < -1$ in (b)(ii) scores E0 in (b)(ii). For any value of $r > -1$; 'No, as $ r > 1$ ';		$\left(\sum_{n=100}^{300} u_n\right) = \frac{201}{2} [914 + 2714]$	M1		Either $\frac{201}{2}[u_{100} + 2714]$ or	
		<i>n</i> -100			$\frac{201}{2} [2u_{100} + (201 - 1)d]$ used with	
					c's values for d and u_{100} from parts (a)(i)	
(a)(iii) $ \sum_{n=100}^{n=100} u_n = \sum_{n=1}^{300} u_n - \sum_{n=1}^{99} u_n $ $ = \frac{300}{2} [23 + 2714] - \frac{99}{2} [23 + u_{100} - d] $ $ = \frac{300}{2} [23 + 2714] - \frac{99}{2} [23 + u_{100} - d] $ $ = (= 410550 - 45936) $ (A1) $ \sum_{n=100}^{300} u_n = 364614 $ (B1) $ \sum_{n=100}^{300} u_n = 364614 $ (A1) $ \sum_{n=100}^{300} u_n = 364614 $ (B1) $ \sum_{n=100}^{300} u_n = 364614 $ (A1) $ \sum_{n=100}^{300} u_n = 364614 $ (B1) $ \sum_{n=100}^{300} u_n = 364614 $ (C1) $ \sum_{n=100}^{300} u_n = 364614 $ (C2) $ \sum_{n=100}^{300} u_n = 364614 $ (C3) $ \sum_{n=100}^{300} u_n = 364614 $ (C4) $ \sum_{n=100}^{300} u_n = 364614 $ (C5) $ \sum_{n=1000}^{300} u_n = 364614 $ (C6) $ \sum_{n=1000}^{300} u_n = 364614 $ (C7) $ \sum_{n=1000}^{300} u_n = 364614 $ (C8) $ \sum_{n=1000}^{300} u_n = 364614 $ (C9) $ \sum_{n=10000}^{300} u_n = 364614 $ (C9) $ \sum_{n=1000000000000000000000000000000000000$		200				
(a)(iii) $ \sum_{n=100}^{n=100} u_n = \sum_{n=1}^{300} u_n - \sum_{n=1}^{99} u_n $ $ = \frac{300}{2} [23 + 2714] - \frac{99}{2} [23 + u_{100} - d] $ $ = \frac{300}{2} [23 + 2714] - \frac{99}{2} [23 + u_{100} - d] $ $ = (= 410550 - 45936) $ (A1) $ \sum_{n=100}^{300} u_n = 364614 $ (B1) $ \sum_{n=100}^{300} u_n = 364614 $ (A1) $ \sum_{n=100}^{300} u_n = 364614 $ (B1) $ \sum_{n=100}^{300} u_n = 364614 $ (A1) $ \sum_{n=100}^{300} u_n = 364614 $ (B1) $ \sum_{n=100}^{300} u_n = 364614 $ (C1) $ \sum_{n=100}^{300} u_n = 364614 $ (C2) $ \sum_{n=100}^{300} u_n = 364614 $ (C3) $ \sum_{n=100}^{300} u_n = 364614 $ (C4) $ \sum_{n=100}^{300} u_n = 364614 $ (C5) $ \sum_{n=1000}^{300} u_n = 364614 $ (C6) $ \sum_{n=1000}^{300} u_n = 364614 $ (C7) $ \sum_{n=1000}^{300} u_n = 364614 $ (C8) $ \sum_{n=1000}^{300} u_n = 364614 $ (C9) $ \sum_{n=10000}^{300} u_n = 364614 $ (C9) $ \sum_{n=1000000000000000000000000000000000000$		$\sum_{n=0}^{300} u_n = 364614$	Δ1		364614	
(a)(iii) $ \sum_{n=10}^{300} u_n = \sum_{n=1}^{300} u_n - \sum_{n=1}^{90} u_n $ $= \frac{300}{2} [23 + 2714] - \frac{99}{2} [23 + u_{100} - d] $ $= (a + 10550 - 45936) $ (b)(i) $ 24 + 24r^3 = (-57) $ (ii) No, (the series does NOT have a sum to infinity), since -1.5 does not lie between -1 and 1 (a)(iii) $ -1.5$ does not lie between -1 and 1 (b)(iii) Accept eg notation $ \sum_{n=1}^{300} -1.5$ for (B1) $ -1.5$ for any value of $r \ge -1$ in (b)(i), 'No, as $r \le -1$ '; 'No, as $ r \ge 1$ ';		n=100	111			
(a)(iii) ALTn				3		
ALTn					000,000 10 1110 0 0 11111111 11110 11101	
(b)(i) $24 + 24r^3$ (= -57) M1 $a + ar^3$ seen or used with $a = 24$. PI by (r=) -1.5 oe $a + ar^$	(a)(iii) ALTn	$\sum_{n=0}^{300} u_n = \sum_{n=0}^{300} u_n - \sum_{n=0}^{99} u_n$	(B1)		$\sum_{n=0}^{300} (u_n) - \sum_{n=0}^{99} (u_n) \text{ OE eg } S_{300} - S_{99}$	
(b)(i) $24 + 24r^3$ (= -57) M1 $a + ar^3$ seen or used with $a = 24$. PI by (r=) -1.5 oe $a + ar^$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$			n=1	
(b)(i) $\sum_{n=100}^{300} u_n = 364614$ (A1) $\sum_{n=100}^{300} u_n = 364614$ (A1) $\sum_{n=100}^{300} u_n = 364614$ (Ca)(ii) $24 + 24r^3 (=-57)$ (A1) $24 + 24r^3 (=-57)$ (A1) $24 + 24r^3 (=-57)$ (A1) $2 (=-\frac{3}{2})$ (A1) $2 (=-\frac{3}{2})$ (A1) $2 (=-\frac{3}{2})$ (A1) $2 (=-\frac{3}{2})$ (A2) $2 (=-\frac{3}{2})$ (A3) 364614 (A3) $363700 \text{ is the } c' \text{ s final answer}$ (A1) $2 (=-\frac{3}{2})$ (A1) $2 (=-\frac{3}{2})$ (A2) $2 (=-\frac{3}{2})$ (A3) 364614 (A4) 364614 (A5) $4 (=-\frac{3}{2})$ (A7) $4 (=-\frac{3}{2})$ (A8) $4 (=-\frac{3}{2})$ (A9) $4 (=-\frac{3}{2})$ (A1) $2 (=-\frac{3}{2})$ (A1) 364614 (A1) $4 (=-\frac{3}{2})$ (A2) $4 (=-\frac{3}{2})$ (A3) $4 (=-\frac{3}{2})$ (A1) $4 (=-\frac{3}{2})$ (A1) $4 (=-\frac{3}{2})$ (A2) $4 (=-\frac{3}{2})$ (A3) $4 (=-\frac{3}{2})$ (A1) $4 (=-\frac{3}{2})$ (A2) $4 (=-\frac{3}{2})$ (A3) $4 (=-\frac{3}{2})$ (A1) $4 (=-\frac{3}{2})$ (A2) $4 (=-\frac{3}{2})$ (A3) $4 (=-\frac{3}{2})$ (A3) $4 (=-\frac{3}{2})$ (A3) $4 (=-\frac{3}{2})$ (A1) $4 (=-\frac{3}{2})$ (A2) $4 (=-\frac{3}{2})$ (A3) $4 (=-\frac{3}{2})$ (A1) $4 (=-\frac{3}{2})$ (A2) $4 (=-\frac{3}{2})$ (A3) $4 (=-\frac{3}{2})$ (A1) $4 (=-\frac{3}{2})$ (A2) $4 (=-\frac{3}{2})$ (A3) $4 (=-\frac{3}{2})$ (A1) $4 (=-\frac{3}{2})$ (A2) $4 (=-\frac{3}{2})$ (A3) $4 (=-\frac{3}{2})$ (A4) $4 (=-\frac{3}{2})$ (A3) $4 (=-\frac{3}{2})$ (A3) $4 (=-\frac{3}{2})$ (A3) $4 (=-\frac{3}{2})$ (A4) $4 (=-\frac{3}{2})$ (A3) $4 (=-\frac{3}{2})$ (A4) $4 (=-\frac{3}{2})$ (A4) $4 (=-\frac{3}{2})$ (A5) $4 (=-\frac{3}{2})$ (A7) $4 (=-\frac{3}{2})$ (A8) $4 (=-\frac{3}{2})$ (A9) $4 (=-\frac{3}{2})$ (A9) $4 (=-\frac{3}{2})$ (A1) $4 (=-\frac{3}{2})$ ($= \frac{33}{2} [23 + 2714] - \frac{33}{2} [23 + u_{100} - d]$	(M1)			
(b)(i) $24 + 24r^3 (= -57)$ (ii) $24 + 24r^3 (= -57)$ (b) (ii) $24 + 24r^3 (= -57)$ (c)		(= 410550 - 45936)				
(b)(i) $24 + 24r^3 (= -57)$ (ii) $24 + 24r^3 (= -57)$ (b) (ii) $24 + 24r^3 (= -57)$ (c)		$\sum_{i=0}^{300} u_i = 364614$	(A1)		264614	
(b)(i) $24 + 24r^3$ (= -57) M1 $a + ar^3$ seen or used with $a = 24$. PI by (r=) -1.5 oe $r = -\frac{3}{2}$ A1 2 Correct value for common ratio. (ii) No, (the series does NOT have a sum to infinity), since -1.5 does not lie between -1 and 1 E1ft 1 value of r being < -1. Do NOT apply ISW (a)(iii) Accept eg notation $\sum_{n=1}^{300} -\sum_{n=1}^{99}$ for (B1) OE for the (M1) in Altn: $\frac{300}{2}[2(23) + 299d] - \frac{99}{2}[2(23) + 98d]$ (b)(ii) Any value of $r \ge -1$ in (b)(i) scores E0 in (b)(ii). For any value of $r < -1$ in (b)(i), 'No, as $r < -1$ '; 'No, as $r \le -1$ '; 'No, as $ r > 1$ '; 'No, as $ r \ge 1$ ';		n=100	(A1)			
(ii) $r = -\frac{3}{2}$ No, (the series does NOT have a sum to infinity), since -1.5 does not lie between -1 and 1 Total Accept eg notation $\sum_{n=1}^{300} -\sum_{n=1}^{99}$ for (B1) OE for the (M1) in Altn: $\frac{300}{2}[2(23) + 299d] - \frac{99}{2}[2(23) + 98d]$ Any value of $r \ge -1$ in (b)(i) scores E0 in (b)(ii). For any value of $r < -1$ in (b)(i), 'No, as $r < -1$ '; 'No, as $r \le -1$ '; 'No, as $ r > 1$ '; 'No, as $ r \ge 1$ ';				(3)		
(ii) $r = -\frac{3}{2}$ No, (the series does NOT have a sum to infinity), since -1.5 does not lie between -1 and 1 Total Accept eg notation $\sum_{n=1}^{300} -\sum_{n=1}^{99}$ for (B1) OE for the (M1) in Altn: $\frac{300}{2}[2(23) + 299d] - \frac{99}{2}[2(23) + 98d]$ Any value of $r \ge -1$ in (b)(i) scores E0 in (b)(ii). For any value of $r < -1$ in (b)(i), 'No, as $r < -1$ '; 'No, as $r \le -1$ '; 'No, as $ r > 1$ '; 'No, as $ r \ge 1$ ';	(b)(i)	$24 + 24r^3 (-57)$	M1		$a + ar^3$ soon or used with $a = 24$	
(ii) $r = -\frac{3}{2}$	(-)(-)	24+247 (= -37)	1,722			
(ii) No, (the series does NOT have a sum to infinity), since -1.5 does not lie between -1 and 1 Total OE statement with no contradiction Conclusion and reason, ft only on c's value of r being < -1 . Do NOT apply ISW (a)(iii) Accept eg notation $\sum_{n=1}^{300} -\sum_{n=1}^{99}$ for (B1) OE for the (M1) in Altn: $\frac{300}{2}[2(23) + 299d] - \frac{99}{2}[2(23) + 98d]$ Any value of $r \ge -1$ in (b)(i) scores E0 in (b)(ii). For any value of $r < -1$ in (b)(i), 'No, as $r < -1$ '; 'No, as $r \le -1$ '; 'No, as $ r > 1$ '; 'No, as $ r \ge 1$ ';		3				
infinity), since -1.5 does not lie between -1 and 1 Total Elft Conclusion and reason, ft only on c's value of r being <-1 . Do NOT apply ISW (a)(iii) Accept eg notation $\sum_{n=1}^{300} -\sum_{n=1}^{99}$ for (B1) OE for the (M1) in Altn: $\frac{300}{2}[2(23) + 299d] - \frac{99}{2}[2(23) + 98d]$ Any value of $r \ge -1$ in (b)(i) scores E0 in (b)(ii). For any value of $r < -1$ in (b)(i), 'No, as $r < -1$ '; 'No, as $r \le -1$ '; 'No, as $ r > 1$ '; 'No, as $ r \ge 1$ ';		2	A1	2		
Total E1ft 1 value of r being < -1 . Do NOT apply ISW Total 9 OE for the (M1) in Altn: $\frac{300}{2} \left[2(23) + 299d \right] - \frac{99}{2} \left[2(23) + 98d \right]$ (b)(ii) Any value of $r \ge -1$ in (b)(i) scores E0 in (b)(ii). For any value of $r < -1$ in (b)(i), 'No, as $r < -1$ '; 'No, as $r \le -1$ '; 'No, as $ r > 1$ '; 'No, as $ r \ge 1$ ';	(ii)	1 · ·				
(a)(iii) Accept eg notation $\sum_{n=1}^{300} -\sum_{n=1}^{99}$ for (B1) OE for the (M1) in Altn: $\frac{300}{2}[2(23) + 299d] - \frac{99}{2}[2(23) + 98d]$ (b)(ii) Any value of $r \ge -1$ in (b)(i) scores E0 in (b)(ii). For any value of $r < -1$ in (b)(i), 'No, as $r < -1$ '; 'No, as $ r > 1$ '; 'No, as $ r \ge 1$ ';			E1ft	1	•	
(a)(iii) Accept eg notation $\sum_{n=1}^{300} -\sum_{n=1}^{99}$ for (B1) OE for the (M1) in Altn: $\frac{300}{2} [2(23) + 299d] - \frac{99}{2} [2(23) + 98d]$ (b)(ii) Any value of $r \ge -1$ in (b)(i) scores E0 in (b)(ii). For any value of $r < -1$ in (b)(i), 'No, as $r < -1$ '; 'No, as $r \le -1$ '; 'No, as $ r > 1$ '; 'No, as $ r \ge 1$ ';					· ·	
OE for the (M1) in Altn: $\frac{300}{2} [2(23) + 299d] - \frac{99}{2} [2(23) + 98d]$ Any value of $r \ge -1$ in (b)(i) scores E0 in (b)(ii). For any value of $r < -1$ in (b)(i), 'No, as $r < -1$ '; 'No, as $r \le -1$ '; 'No, as $ r > 1$ '; 'No, as $ r \ge 1$ ';	(0)(iii)			9		
(b)(ii) Any value of $r \ge -1$ in (b)(i) scores E0 in (b)(ii). For any value of $r < -1$ in (b)(i), 'No, as $r < -1$ '; 'No, as $r \le -1$ ';	(a)(III)	Accept eg notation $\sum_{n=1}^{300} -\sum_{n=1}^{99}$ for (B1)				
(b)(ii) Any value of $r \ge -1$ in (b)(i) scores E0 in (b)(ii). For any value of $r < -1$ in (b)(i), 'No, as $r < -1$ '; 'No, as $r \le -1$ ';		OE for the (M1) in Altn: $\frac{300}{2} [2(23) + 299d] - \frac{99}{2} [2(23) + 98d]$				
	(b)(ii)					
are examples where Elft is secred						
are examples where Efft is scored.		are examples where E1ft is scored.				

Q	Solution	Mark	Total	Comment
5(a)	a = 54; $b = 36$; $c = 8$	B1,B1,	3	B1 for each correct value. Accept correct
		B1		embedded values for a, b and c within the
(1.)		D.4	_	expansion linked to correct power of x
(b)	(n=)-4	B1	1	-4 . Condone x^{-4} .
(c)(i)	(Integrand =) $x^{-4}(27 + ax^2 + bx^4 + cx^6)$	M1		Uses c's (a) and c's (b) in a product;
	,			or cancelling to get at least 3 correct ft
				terms $\frac{27}{x^4} + \frac{a}{x^2} + b + cx^2$ (allow bx^0 for b)
	$\int (27x^{-4} + ax^{-2} + b + cx^2) (dx)$	A1F		Integrand $27x^{-4} + ax^{-2} + b + cx^{2}$, only ft
	$\int (27x^{2} + 4x^{2} + b + cx^{2}) (dx)$			on c's non-zero numerical answers from
				(a). PI by next line in soln.
	$= \frac{27x^{-3}}{-3} + \frac{ax^{-1}}{-1} + bx + \frac{cx^{3}}{3} (+k)$			
	$=\frac{-3}{-3}+\frac{-1}{-1}+bx+\frac{-3}{3}$ (+k)	dM1		Correct integration of at least 3 terms, ft
				only on c's non-zero values from (a), accept unsimplified
	0.3			accept unsimplified
	$= -9x^{-3} - 54x^{-1} + 36x + \frac{8x^3}{3} (+k)$	A1	4	Correct with coefficients and signs
	3			simplified; condone absence of $+k$
(c)(ii)	$\left\{ \left(\begin{array}{ccc} 8(3)^3 \end{array} \right)$			
	$\left\{-9(3)^{-3}-54(3)^{-1}+36(3)+\frac{8(3)^3}{3}\right\}-$			Clear evidence of $F(3) - F(1)$ attempted
	3	3.51		where integration must have been
	$\left\{-9-54+36+\frac{8}{3}\right\}$	M1		attempted to get F; If cand uses $F(x)$ = the given integrand, then M0
	$\left \begin{array}{c} -9 - 34 + 30 + \overline{3} \end{array} \right $			given integrand, then ivio
	$= \left[-\frac{1}{3} - 18 + 108 + 72 \right] - \left(-24\frac{1}{3} \right)$			
	= 186	A1	2	CAO 186
				NMS scores 0/2
	Total		10	

(c)(i) The final A1 mark can be awarded if the simplified version occurs in (c)(ii) before the values are inserted

(c)(ii) For guidance
$$\frac{485}{3} - \left(-\frac{73}{3}\right) = \frac{558}{3} = 186$$

(c)(ii) After incorrect integration we must see at least some substitution of 3 and 1 rather than just the difference of two incorrect values for M1 to be awarded

Q	Solution	Mark	Total	Comment
6	100 = 121p + q $16 = 16p + q$	M1 M1		OE seen or used OE seen or used
	$100 = 121p + 16 - 16p (84 = 105p)$ $p = \frac{84}{105} \left(= \frac{4}{5} = 0.8 \right)$	dM1		Valid method to solve the correct two simultaneous equations to reach a correct equation in either p only or q only eg $100 = 121 \left(1 - \frac{q}{16}\right) + q \text{ OE}, 21 = \frac{105}{16} q,$ $16(121 - 100) = (121 - 16)q$ PI by correct values for both p and q
	$q = \frac{336}{105} \left(= \frac{16}{5} = 3.2 \right)$	A1		A correct value for both p and q . ACF
	$u_4 = 0.8 \times 100 + 3.2 = 83.2 = \frac{416}{5}$	A1F	5	FT provided either c's p or c's q is correct ie ft on either $80 + q$ or $100p + 3.2$ Accept correct ft value in any form
	Total		5	

Q	Solution	Mark	Total	Comment	
7(a) (i)	$\log_b \frac{6x}{18}$	B1	1	$\log \frac{6x}{18}$ OE Condone base <i>b</i> missing	
(ii)	$\log_b \frac{6x}{18} + \log_b (x - 1) = \log_b \frac{6x(x - 1)}{18}$	M1		Eg $\log D + \log(x-1) = \log D(x-1)$	
				or $\log(x+4) - \log(x-1) = \log\left(\frac{x+4}{x-1}\right)$	
				OE results so as to have no more than two log terms remaining in the given equation. Condone base <i>b</i> missing PI by a correct eqn. with no log terms provided no errors seen in (ii) in determining such an eqn.	
	$\log_b(x+4) = \log_b \frac{6x(x-1)}{18}$ $\Rightarrow x+4 = \frac{6x(x-1)}{18}$			OE A correct eqn after all logarithms	
	$\Rightarrow x + 4 = \frac{6x(x - 1)}{18}$	A1		eliminated in a correct manner. Condone	
				$\log(x+4) = \log \frac{6x(x-1)}{18}$ with 'log' on	
	$x^2 - 4x - 12 = 0 \Rightarrow x = 6, x = -2$	A1		each side crossed out. x = 6, $x = -2$; if -2 is missing we must see either $(x - 6)(x + 2)$ or a valid	
(b)(i)	$\begin{vmatrix} x = 6 \\ n = m^k \end{vmatrix}$	A1 B1	4 1	statement for ignoring it 6 as the only solution.	
(ii)	$(\log_2)x^2\sqrt{x} = (\log_2)x^{2.5}$	B1		$x^2 \sqrt{x} = x^{2.5}$ seen or used at any stage	
	$p\log_8 x^2 = \log_8 (x^2)^p$	M1		Use of log law $a \log b = \log b^a$ at any	
	Let $T = p \log_8 x^2 = \log_2 x^2 \sqrt{x}$			stage in (b)(ii) , or $8^T = x^{2p}$ OE seen	
	eg $2^T = x^{2.5}$, $8^T = x^{2p} = 2^{3T}$; $x^{2p} = x^{7.5}$	M1		Correctly converting to the same base OE and eliminating in a correct manner all	
	$\log_2 x^{2.5} = \log_8 x^{2p} = \frac{\log_2 x^{2p}}{\log_2 8}$			logarithmic terms. Can also be awarded after B0 if cand has $x^2 \sqrt{x} = x^q$, where q	
	$= \log_2 x^{\frac{2p}{3}}; \qquad \underline{x^{2.5} = x^{\frac{2p}{3}}}$			is non-integer q	
	2p = 7.5; p = 3.75			Correct value for nucletained convincingly	
	or eg $\frac{2p}{3} = 2.5; p = 3.75$	A1	4	Correct value for <i>p</i> , obtained convincingly for a general <i>x</i> . NMS scores 0/4	
/->/!!	Total	10/	10		
(a)(ii)					
(b)(ii)	$2p\log_8 x = 2\log_2 x + 0.5\log_2 x \text{ (M1B1)}; = \frac{2}{2}p\log_2 x \text{ ; } 2.5 = \frac{2p}{2}\text{ (M1)} p = 3.75 \text{ (A1)}$				

Q	Solution	Mark	Total	Comment	
8(a)	$9\sin^2\theta - 2\sin\theta\cos\theta = 8$				
	$9\sin^2\theta + 2\sin\theta\cos\theta + 8$				
	$\frac{9\sin^2\theta}{\cos^2\theta} - \frac{2\sin\theta\cos\theta}{\cos^2\theta} = \frac{8}{\cos^2\theta}$				
				Dividing each term by $\cos^2 \theta$ and using	
	$9 \tan^2 \theta - 2 \tan \theta = \frac{8}{\cos^2 \theta}$	M1		correct identity to obtain at least two	
	203 0	1411		correct terms in different powers of $\tan \theta$	
		M1		Replacing 8 by $8(\cos^2\theta + \sin^2\theta)$ or	
	,			PI by seeing eg $\sin^2 \theta - 2\sin \theta \cos \theta =$	
				$=8(1-\sin^2\theta)=8\cos^2\theta$	
				or PI by seeing $\frac{8}{\cos^2 \theta} = 8(1 + \tan^2 \theta)$	
				[The two method marks can be awarded	
	$8(\cos^2\theta + \sin^2\theta)$			in any order]	
	$9 \tan^2 \theta - 2 \tan \theta = \frac{8(\cos^2 \theta + \sin^2 \theta)}{\cos^2 \theta}$				
	$9\tan^2\theta - 2\tan\theta = 8 + 8\tan^2\theta$				
	$\tan^2\theta - 2\tan\theta - 8 = 0$				
	$(\tan\theta - 4)(\tan\theta + 2) = 0$	A1	3	AG Be convinced	
(b)	75.96, 255.96, 116.56, 296.56	M1		Any two correct values equal to or rounding to integer values 76, 256, 117, 297 seen	
	$(\tan 2x = 4)$ $2x = 75.96$, 255.96 $(\tan 2x = -2)$ $2x = 116.56$, 296.56	A1		2x equal to or rounding to the four integer values 76, 256, 117, 297 seen or used	
				Condone eg 2θ for $2x$	
		D2 1 0	4	38, 58, 128, 148 with or without working	
	$(x =) 38^{\circ}, 128^{\circ}, 58^{\circ}, 148^{\circ}$	B2,1,0	4	scores B2 ; if B2 not scored, award B1 if	
				either four values rounding to the above	
				or three of the above and no more than one incorrect; or 38,128, 59, 149	
				[Ignore answers outside $0 \le x \le 180$. If	
				more than four answers in interval deduct	
				1 mark for each extra from B marks to a	
	Total		7	min of 0]	
(a)	Line 2 followed by line 6 in the solution col	umn woul	ld score N	M1M1; Line 2 then line 7 is M1M0	
(a)	Cand who starts with $(\tan \theta - 4)(\tan \theta + 2)$			*	
	M1M1	•			
(a)		If θ missing throughout the soln except for the printed result, do not award the A1 mark			
(b)	Candidate who just solves the eqn given in (
(b)	Gen. Solns: Either -63.4+180n, or 75.96+180n; (M1), [37.98+90n, -31.7+90n;] A1; 38,128,58,148 B2				

Q	Solution	Mark	Total	Comment
9(a)(i)	Stretch (I) in x (-direction) OE (II)	M1		Need (I) and either (II) or (III)
	(scale factor) 0.5 OE (III)	A1	2	Need (I) and (III)
(a)(ii)	[-3]	E2,1	2	More than one transformation scores $0/2$
	Translation $\begin{vmatrix} -3\\0 \end{vmatrix}$			E2 : 'translat' and $\begin{bmatrix} -3\\0 \end{bmatrix}$.
				If not E2 award E1 for either 'translat'
				or for $\begin{bmatrix} -3\\0 \end{bmatrix}$.
				More than one transformation scores 0/2
(b)(i)	$2^{x+3} = 2^3 2^x = 8u$	B1	1	$8u$ Accept 2^3u if in later work it is simplified to $8u$
(ii)	$u^2 - 8u + 15 = 0$			Eliminating y with $2^{2x} = u^2$ or $(2^x)^2$ to
		M1		form a quadratic eqn in u or in 2^x (terms in any order)
	$(v+15)^2$			OR eliminating x with
	$y = \left(\frac{y+15}{2^3}\right)^2 (y^2 - 34y + 225 = 0)$			$2^{2x} = y = \left(\frac{y+15}{2^3}\right)^2 \text{ condoning one sign}$
				or one numerical error
	u = 3, $u = 5$; $y = 9$, $y = 25$;	A2,1		Correct values for u (or 2^x) and correct
				values for y. If not A2 award A1 for any two correct values. If y-values not
				simplified look for later evidence; eg p as
				'16' in the final answer is sufficient
	2 -> 1 2.			evidence.
	$u = 3 \Rightarrow x = \log_2 3;$	M1		From a quadratic eqn, use of
	$u = 5 \Rightarrow x = \log_2 5$			$2^x = k \Rightarrow x = \log_2 k \text{ OE, for } k > 0$
				M0 if c's quadratic eqn would give non-
				real roots or no positive root when solved
				correctly
	25-9			Dep on both previous M1.
	Gradient of $AB = \frac{25 - 9}{\log_2 5 - \log_2 3}$	dM1		$\frac{y_A - y_B}{y_B}$ used with c's x and y values
				$x_A - x_B$
	$=\frac{16}{\sqrt{5}}$			16
	$-\frac{1}{\log_2\left(\frac{5}{3}\right)}$	A1	6	OE in the requested form eg $\frac{-10}{\log_2(0.6)}$
	Total		11	- , ,
(b)(ii)	OE for the 2 nd M1: eg $2^x = 3 \Rightarrow x = \frac{\log 3}{\log 2}$	3		
	$\log 2$	2		