

# A-LEVEL Mathematics MPC3

UNI∓: Pure Core 3

Mark scheme

6360

June 2017

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aga.org.uk

#### Key to mark scheme abbreviations

M mark is for method

m or dM mark is dependent on one or more

M marks and is for method

A mark is dependent on M or m

marks and is for accuracy

B mark is independent of M or m

mark is independent of M or m marks and is for method and

accuracy

E mark is for explanation or ft or F follow through from previous

follow through from previous incorrect result

CAO correct answer only
CSO correct solution only
AWFW anything which falls within
AWRT anything which rounds to

ACF any correct form
AG answer given
SC special case
OE or equivalent

A2,1 2 or 1 (or 0) accuracy marks -x EE deduct x marks for each error

NMS no method shown PI possibly implied

SCA substantially correct approach

c candidate

sf significant figure(s) dp decimal place(s)

#### No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

| Q1  | Solution                                                                         | Mark | Total | Comment                                                     |
|-----|----------------------------------------------------------------------------------|------|-------|-------------------------------------------------------------|
| (a) | $\left(\frac{\mathrm{d}y}{\mathrm{d}x} = \right)$                                |      |       |                                                             |
|     | $A\sin 4x \frac{\sin 3x}{\cos^2 3x} + B \frac{\cos 4x}{\cos 3x}$                 | M1   |       | $A\sin 4x \sec 3x \tan 3x + B\cos 4x \sec 3x$ $A, B \neq 0$ |
|     | A=3, B=4                                                                         | A1   |       |                                                             |
|     |                                                                                  |      | 2     |                                                             |
| (b) |                                                                                  |      |       |                                                             |
|     | $\left(\int = \int k \ln(2x^2 + 3) + (+c)\right)$                                | M1   |       | Where <i>k</i> is a constant                                |
|     | $\left( \int = \int k \ln(2x^2 + 3) + c \right)$ $\frac{3}{2} \ln(2x^2 + 3) + c$ | A1   |       | Must have +c as part of final answer                        |
|     |                                                                                  |      | 2     |                                                             |
|     | <b>-</b>                                                                         |      | 4     |                                                             |
|     | Total                                                                            |      | 4     |                                                             |

(a) Do not allow -(-3) for A1

Candidate using the quotient rule correctly, then SC B1 for  $\frac{4\cos 4x\cos 3x - (-3\sin 3x\sin 4x)}{\cos^2 3x}$  or better

(b) Condone poor use of brackets for M1 but only allow A1 if recovered. Condone 6/4 for 3/2

| Q2    | So                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | olution                     | Mark        | Total | Comment                                                                                                                                                                     |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a)   | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             | B1          |       | All 5 correct <i>x</i> values (and no extra used)  PI by 5 correct <i>y</i> values                                                                                          |
|       | $e^{1.8-0.6^3} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.87441                     |             |       | Fi by 3 correct y values                                                                                                                                                    |
|       | $e^{2.4-0.8^3} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             | M1          |       |                                                                                                                                                                             |
|       | $1 	 e^2 = 7.38$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             | 1411        |       | At least 4 correct y values in exact form or decimals, rounded or truncated to 3 dp or                                                                                      |
|       | $e^{3.6-1.2^3} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.50128                     |             |       | better (in table or formula)                                                                                                                                                |
|       | $e^{4.2-1.4^3} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |             |       | (PI by correct answer)                                                                                                                                                      |
|       | $\int = 0.2 \times (4.874 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.606+)                     | dM1         |       | Correct sub into formula with $h = 0.2$ <b>OE</b> and 5 correct y values either listed, with + signs, or totalled.                                                          |
|       | = 5.932                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | A1          |       | (PI by correct answer) CAO, must see this value exactly and no                                                                                                              |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             | AI          |       | error seen                                                                                                                                                                  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |             | 4     |                                                                                                                                                                             |
| (b)   | $\left(\frac{dy}{dx} = \right) e^{3x - x^3} (3 - 3)$ Equating their $\frac{d}{dx}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OE OE                       | B1          |       | Do not condone poor use of brackets for this mark, unless written correctly later                                                                                           |
|       | Equating their $\frac{d}{d}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{y}{x} = 0$           | M1          |       | <b>FT</b> 'their' $\frac{dy}{dx}$ , PI by further working                                                                                                                   |
|       | $x = 1, y = e^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             | A1          |       | From $3 - 3x^2 = 0$ oe                                                                                                                                                      |
|       | $x = -1, y = e^{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             | A1          |       | And no 'extra' answers, coming from 'exponential terms'                                                                                                                     |
|       | $\frac{d^2 y}{dx^2} = e^{3x - x^3} (-6x) + \frac{d^2 y}{dx^2} = e^{3x - x^3} $ | $-(3-3x^2)^2 e^{3x-x^3}$ OF | E <b>B1</b> |       | Do not condone poor use of brackets for this mark, unless written correctly later                                                                                           |
|       | $x = 1, y''(1) = e^{2}(-6x^{2})$<br>$x = -1, y''(-1) = e^{-6x^{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <i>,</i> ,                  | M1          |       | Sub <b>both</b> correct x values into their $\frac{d^2y}{dx^2}$                                                                                                             |
|       | $-6e^2 < 0$ so maxim $6e^{-2} > 0$ so minimu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             | A1          | 7     | Including inequalities (symbol or wording), and both conclusions.  Must have scored 2 <sup>nd</sup> <b>B1</b> Final <b>A</b> mark can be earned even if <b>A0A0</b> earlier |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Tota                        | 1           | 11    |                                                                                                                                                                             |
| Notos |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |             | j     |                                                                                                                                                                             |

**(b)** May have used quotient rule to find 
$$\frac{dy}{dx} = \frac{e^{x^3} 3e^{3x} - e^{3x} 3x^2 e^{x^3}}{(e^{x^3})^2}$$
 for **B1**

The values of the  $2^{nd}$  derivative may be evaluated (to -44.[3] and 0.8[12]), for the final **A1** If a candidate has 3 'values' for x, then they lose the  $2^{nd}$  **A** mark, but subsequent marks are available

| Q3 | Solution                                                                       | Mark      | Total | Comment                                                                |
|----|--------------------------------------------------------------------------------|-----------|-------|------------------------------------------------------------------------|
|    | $\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}x} = -2\sin 2x \qquad \text{OE}$        | B1        |       |                                                                        |
|    | $k \int u^2 \times (1 - u^2) du$ $= m \int (u^2 - u^4) du$                     | M1        |       | Condone omission of du                                                 |
|    | $= m \int (u^2 - u^4) du$                                                      | dM1       |       | Condone omission of brackets and du                                    |
|    | $= -\frac{1}{2} \left( \frac{u^3}{3} - \frac{u^5}{5} \right)  (+c)  \text{OE}$ | <b>A1</b> |       | Must have seen $du$ on an earlier line where all terms are in 'u' only |
|    | $= \frac{\cos^5 2x}{10} - \frac{\cos^3 2x}{6} \qquad (+c) \qquad \text{OE}$    | <b>A1</b> |       | Condone omission of $+c$                                               |
|    |                                                                                |           | 5     |                                                                        |
|    | Total                                                                          |           | 5     |                                                                        |

Withhold final A1 for poor notation eg  $\cos 2x^5$  but may have  $(\cos 2x)^5$  for  $\cos^5 2x$  Can score A0A1 at end, if there is an omission of du

| Q4     | Solution                                                              | Mark | Total | Comment                                                                                                                                                                                                                                |
|--------|-----------------------------------------------------------------------|------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a)    | $f(x) = x - \ln\left(\frac{3x + 10}{3x + 1}\right)$ $f(1) = -0.1(78)$ |      |       | (or reverse)                                                                                                                                                                                                                           |
|        | f(2) = 1.(17)                                                         | M1   |       | Both values rounded or truncated to at least 1sf                                                                                                                                                                                       |
|        | Change of sign(or different signs) $\Rightarrow 1 < \alpha < 2$       | A1   |       | Must have both statement and interval in words or symbols or comparing 2 sides: at 1, $1 < \ln(13/4) = 1.1(79)$ ;                                                                                                                      |
|        |                                                                       |      |       | at 2, $2 > \ln(16/7) = 0.8()$ (M1)<br>Conclusion as before (A1)                                                                                                                                                                        |
|        |                                                                       |      | 2     | Conclusion as octore (A1)                                                                                                                                                                                                              |
| (b)(i) | $x_2 = 0.827$                                                         | B1   |       |                                                                                                                                                                                                                                        |
|        | $x_3 = 1.277$                                                         | B1   |       | Ignore further values                                                                                                                                                                                                                  |
|        |                                                                       |      | 2     |                                                                                                                                                                                                                                        |
| (ii)   |                                                                       | M1   | 2     | Vertical line from $x_1$ to the curve, seen or implied, and then horizontal to $y = x$ All correct with $2^{nd}$ vertical and horizontal lines (only required above the ' $y = x$ ' line), and $x_2$ , $x_3$ labelled on the $x$ -axis |
|        |                                                                       |      |       |                                                                                                                                                                                                                                        |
|        | Total                                                                 |      | 6     |                                                                                                                                                                                                                                        |

(a) Condone "less than or equal to"; allow "x", "root" for  $\alpha$  but not "it"

Candidates could change f(x) into exponentials eg  $f(x) = e^x - \left(\frac{3x+10}{3x+1}\right)$  leading to f(1)=-0.5 and f(2)=5

| Q5   | Solution                                                                                                                               | Mark     | Total | Comment                                                                                                                                        |
|------|----------------------------------------------------------------------------------------------------------------------------------------|----------|-------|------------------------------------------------------------------------------------------------------------------------------------------------|
| (a)  | $x = \ln(3y+1)$ $e^x = 3y+1$                                                                                                           | M1<br>M1 |       | Either order for <b>M1 M1</b> : Interchange <i>x</i> and <i>y</i> Correctly converting to e form.                                              |
|      | $[f^{-1}(x)] = \frac{1}{3}(e^x - 1)$ $[g(x) = ]\frac{3}{3x + 1}$                                                                       | A1<br>B1 |       | ACF                                                                                                                                            |
|      |                                                                                                                                        |          | 4     |                                                                                                                                                |
| (b)  | $\frac{3}{3x+1} = \frac{1}{3}(e^x - 1)$ $\frac{9}{3x+1} + 1 = e^x$ $\frac{3x+10}{3x+1} = e^x$ $x = \ln\left(\frac{3x+10}{3x+1}\right)$ | M1       |       | Correctly isolating term in $e^x$ from 'their' $f^{-1}(x)$ and 'their' $g(x)$ Must see an intermediate line  AG All correct and no errors seen |
|      |                                                                                                                                        |          | 2     |                                                                                                                                                |
| Nata | Total                                                                                                                                  |          | 6     |                                                                                                                                                |

- (a) Condone poor use of brackets if recovered
- (b) Do not condone poor use of brackets even if recovered for **A1**If a candidate has equation in terms of  $e^{x-1}$  then they must 'isolate x' correctly to score **M1**

| Q6 | Solution                                                                   | Mark | Total | Comment                                                                         |
|----|----------------------------------------------------------------------------|------|-------|---------------------------------------------------------------------------------|
|    | $\int 3x (2x-1)^{-0.5} dx$ $u = 3x \qquad \frac{dv}{(dx)} = (2x-1)^{-0.5}$ | M1   |       | $u$ and $\frac{dv}{(dx)}$ correct, with $\frac{du}{dx}$ and $\int dv$ attempted |
|    | $\frac{du}{(dx)} = 3 \qquad v = \frac{2}{2} (2x - 1)^{0.5}$                | A1   |       | All correct                                                                     |
|    | $\int = 3x(2x-1)^{0.5} - \int (2x-1)^{0.5} \times 3 \text{ (dx)}$          | dM1  |       | Correct substitution of their terms into the parts formula                      |
|    | $=3x(2x-1)^{0.5}-(2x-1)^{1.5} 	 OE$                                        | A1   |       |                                                                                 |
|    | $\left[\int_{1}^{5}\right] = (15 \times 3 - 27) - (3 - 1)$                 | dM1  |       | F(5) – F(1), correct from $Ax(2x-1)^{0.5} - B(2x-1)^{1.5}$                      |
|    | =16                                                                        | A1   |       |                                                                                 |
|    |                                                                            |      | 6     |                                                                                 |
|    | Total                                                                      |      | 6     |                                                                                 |

Check that an answer of 16 follows correct working

| Q7 | Solution                                                                                                           | Mark      | Total | Comment                                                        |
|----|--------------------------------------------------------------------------------------------------------------------|-----------|-------|----------------------------------------------------------------|
|    | 2 V-shaped mod graphs, one with vertex on positive <i>x</i> -axis and other with vertex on negative <i>x</i> -axis | B1        |       |                                                                |
|    | Critical values $\frac{15k}{2}$                                                                                    | B1        |       |                                                                |
|    | 5x - 3k = -3(x + 4k)  OE                                                                                           | M1        |       | PI                                                             |
|    | $[x=]-\frac{9k}{8}$                                                                                                | <b>A1</b> |       | And no other values                                            |
|    | $x \le -\frac{9k}{8}  ,  x \ge \frac{15k}{2}$                                                                      | A1        |       | May have <b>OR</b> between two inequalities but not <b>AND</b> |
|    |                                                                                                                    |           | 5     |                                                                |
|    | Total                                                                                                              |           | 5     |                                                                |

For first B1 condone line(s) extended, 'bending' to show intersection of lines

For **M1**, condone other symbols for '='

To find the cv's, a candidate might have squared and factorised, the **M1** is earned for (8x+9k)(2x-15k), the accuracy marks are as above.

Mark last line as final answer

| Q8  | Solution                                                                                      | Mark         | Total   | Comment                                                                                                                 |
|-----|-----------------------------------------------------------------------------------------------|--------------|---------|-------------------------------------------------------------------------------------------------------------------------|
| (a) | $\tan^2 p = \sec^2 p - 1$ [= 11 - sec p]                                                      |              |         |                                                                                                                         |
|     | $\sec^2 p - 1 = 11 - \sec p$                                                                  | M1           |         | Correct use of trig identity PI                                                                                         |
|     | $\sec^2 p + \sec p - 12 = 0$                                                                  |              |         |                                                                                                                         |
|     | $(\sec p - 3)(\sec p + 4)[= 0]$                                                               | <b>A1</b>    |         | Factorisation or correct use of formula PI                                                                              |
|     | $\sec p = 3, -4$                                                                              | A1           |         | Both correct and no errors seen                                                                                         |
|     | p = 1.23[], 1.82[],                                                                           | B1           |         | Sight of <b>any</b> of these values correct to 2 dp                                                                     |
|     | 5.05[], 4.459[]                                                                               | B1           |         | 3 of these values correct to 2 dp                                                                                       |
|     | x = 0.88, 1.17, 2.49, 2.79                                                                    | B1<br>B1     |         | 3 correct (must be to 2 dp) All 4 correct (must be to 2 dp) and no extras in interval (ignore answers outside interval) |
|     |                                                                                               |              | 7       |                                                                                                                         |
| (b) | Stretch (I)<br>(Parallel to) $x$ -axis (or line $y = 0$ ) (II)<br>SF 2 (III)<br>(followed by) | M1<br>A1     |         | I and (II or III) I + II + III                                                                                          |
|     | Translation through $\begin{bmatrix} k \\ 0 \end{bmatrix}$                                    | B1           |         |                                                                                                                         |
|     | $\begin{bmatrix} -\frac{\pi}{6} \\ 0 \end{bmatrix}$                                           | B1           |         |                                                                                                                         |
|     | OR                                                                                            |              |         |                                                                                                                         |
|     | Translation through $\begin{bmatrix} k \\ 0 \end{bmatrix}$                                    | (B1)         |         |                                                                                                                         |
|     | $\begin{bmatrix} -\frac{\pi}{12} \\ 0 \end{bmatrix}$ (followed by)                            | (B1)         |         |                                                                                                                         |
|     | Stretch (I)<br>Parallel to x-axis (or line $y = 0$ ) (II)<br>SF 2 (III)                       | (M1)<br>(A1) |         | As above                                                                                                                |
|     | Total                                                                                         |              | 4<br>11 |                                                                                                                         |
|     | Total                                                                                         |              | ''      |                                                                                                                         |

(a) May use cos and sin leading to  $\cos p = 1/3, -1/4$  for first M1, A1, A1

Condone using 'x' as 'p'

For first **B1** mark, this can be implied by one correct final value

For second **B1** mark, this can be implied by three correct final values, but do not accept values in terms of  $\pi$ 

| Q9     | Solution          | Mark       | Total | Comment                                                                                                                         |
|--------|-------------------|------------|-------|---------------------------------------------------------------------------------------------------------------------------------|
| (a)    | <i>y</i> <b>↑</b> | M1         |       | Modulus graph, 4 sections                                                                                                       |
|        |                   | <b>A1</b>  |       | Correct on 2 'outside' sections                                                                                                 |
|        |                   | A1         |       | Correct on 2 'inside' sections, 2 max, one on the <i>y</i> -axis (approx.), and correct cusps <i>Ignore any dotted sections</i> |
|        |                   |            | 3     |                                                                                                                                 |
| (b)    | <i>y</i> <b>↑</b> | M1         |       | Graph with exactly 1 max and 2 min                                                                                              |
|        | x                 | A1         |       | All correct, symmetrical about y-axis                                                                                           |
|        |                   |            | 2     |                                                                                                                                 |
| (c)(i) | x = -a            | B1         |       |                                                                                                                                 |
|        | y = 3b - 2        | B1         |       | Each value may be stated or given as coordinates                                                                                |
|        |                   |            | 2     |                                                                                                                                 |
| (ii)   | x = 0.5a          | <b>B</b> 1 |       |                                                                                                                                 |
|        | y = 27b           | B1         |       | Each value may be stated or given as coordinates                                                                                |
|        |                   |            | 2     |                                                                                                                                 |
|        | Total             |            | 9     |                                                                                                                                 |

- (b) The 2 min must be at the same 'depth' approx for A1
- (c) Condone coordinates written in columns
- (c)(i) Do not allow 0 a for -a, nor b 2 + 2b for 3b-2

| Q10    | Solution                                                                                                          | Mark      | Total | Comment                                                                                                                |
|--------|-------------------------------------------------------------------------------------------------------------------|-----------|-------|------------------------------------------------------------------------------------------------------------------------|
| (a)(i) | $x = \ln 4$ , $y = e^{2\ln 4}$                                                                                    |           |       |                                                                                                                        |
|        | $y = \left(e^{\ln 16} = \right)16$                                                                                | B1        |       |                                                                                                                        |
|        | $\frac{\mathrm{d}y}{\mathrm{d}x} = 2\mathrm{e}^{2x}$                                                              | M1        |       |                                                                                                                        |
|        | $y-16 = 32(x-\ln 4)$ OE                                                                                           | A1        |       | With no exponentials                                                                                                   |
| (ii)   | $[y=0] -\frac{16}{32} = x - \ln 4$                                                                                |           | 3     | Must see this line oe                                                                                                  |
|        | $x = \ln 4 - \frac{1}{2}$ or $[x = \ln 4 - 0.5]$ $y - 16 = 32(\ln 4 - 0.5 - \ln 4)$ $y = 32 \times -0.5 + 16 = 0$ | B1        |       | AG All correct and no errors seen. Must be using a correct equation from (i), (condone e <sup>2ln4</sup> unsimplified) |
| (1-)   |                                                                                                                   |           | 1     |                                                                                                                        |
| (b)    | [Cone =] $\frac{1}{3}\pi \times 16^2 \times (\ln 4 - (\ln 4 - 0.5))$                                              | M1        |       | <b>FT</b> "their" <i>y</i> =16                                                                                         |
|        | $=\frac{128}{3}\pi$                                                                                               | A1        |       |                                                                                                                        |
|        | [For curve, Vol =] $\pi \int_{0}^{\ln 4} (e^{2x})^2 dx$                                                           | B1        |       | Correct including $\pi$ , limits, dx                                                                                   |
|        | $\left[\int e^{4x} dx\right] = \frac{1}{4} e^{4x}$                                                                | M1        |       |                                                                                                                        |
|        | [Vol =] $\pi \frac{1}{4} (e^{4\ln 4} - e^0)$                                                                      | dM1       |       | Correct substitution of correct limits, including $\pi$ (PI by next A1)                                                |
|        | $=\pi\frac{1}{4}(256-1)$                                                                                          | <b>A1</b> |       | Correct unsimplified exact value, no exponentials                                                                      |
|        | $[=\frac{255}{4}\pi]$                                                                                             |           |       |                                                                                                                        |
|        | Required 'vol' = $\left(\frac{255}{4} - \frac{128}{3}\right)\pi$                                                  | A1F       |       | Vol = vol under curve – vol of cone,<br>must have scored <b>M1M1</b>                                                   |
|        | $=\frac{253}{12}\pi$                                                                                              | A1        |       |                                                                                                                        |
|        | 12                                                                                                                |           | 8     |                                                                                                                        |
|        | Total                                                                                                             |           | 12    |                                                                                                                        |

(c) Condone poor use of brackets for **dM1**, if recovered Condone omission of  $\pi$  for **dM1** if recovered