

Please write clearly in	block capitals.		
Centre number		Candidate number	
Surname			
Forename(s)			_
Candidate signature			 _

AS PHYSICS

Paper 2

Friday 17 May 2019

Morning

Time allowed: 1 hour 30 minutes You are advised to spend about 35 minutes on Section C

Materials

For this paper you must have:

- a pencil and a ruler
- · a scientific calculator
- a Data and Formulae Booklet.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- · Show all your working.

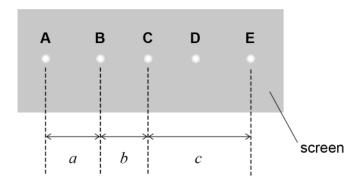
Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 70.
- You are expected to use a scientific calculator where appropriate.
- A Data and Formulae Booklet is provided as a loose insert.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5–34	
TOTAL	

Section A

Answer all questions in this section.


0 1

This question is about the measurement of the wavelength of laser light.

The light is shone onto a diffraction grating at normal incidence.

The light transmitted by the diffraction grating produces five spots on a screen. These spots are labelled **A** to **E** in **Figure 1**.

Figure 1

not to scale

A student uses a metre ruler with $1~\mathrm{mm}$ divisions to take readings. He uses these readings to obtain measurements a, b and c, the distances between centres of the spots as shown in **Figure 1**.

Table 1 shows his measurements and his estimated uncertainties.

Table 1

Measurement	Distance / mm	Uncertainty / mm
а	289	2
b	255	2
С	544	2

0 1.1	Explain why the student's estimated uncertainty in measurement a is greater than the smallest division on the metre ruler. You should refer to the readings taken by the student in obtaining this measurement. [2 marks]
0 1.2	The distance between the centres of spots A and C and the distance between the centres of spots C and E are equal. That is: $a+b=c$
	Calculate the percentage uncertainty in the sum of a and b . [2 marks]
	percentage uncertainty =
	Question 1 continues on the next page

Do not write outside the box

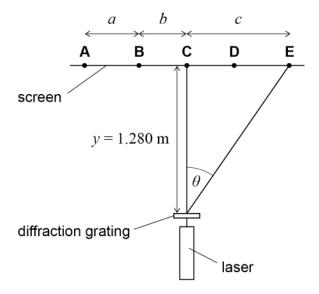

0 1.3	Discuss why the experimental measurements lead to a different percentage uncertainty in c compared to that in $a + b$.
	[2 marks]
0 1 . 4	Eye protection should be used to prevent eye damage when using a laser.
	Describe one other safety measure to minimise the risk of eye damage when using a laser in the laboratory.
	[1 mark]
0 1 . 5	Figure 2 shows the experimental arrangement with with a the perpendicular distance
0 1 1 . 3	Figure 2 shows the experimental arrangement with y , the perpendicular distance between the diffraction grating and the screen, equal to 1.280 m . Table 2 shows some of the data from Table 1 .

Table 2

Measurement	Distance / mm
а	289
ь	255
С	544

Figure 2

Calculate the angle θ shown on **Figure 2**.

[1 mark]

 θ = degrees

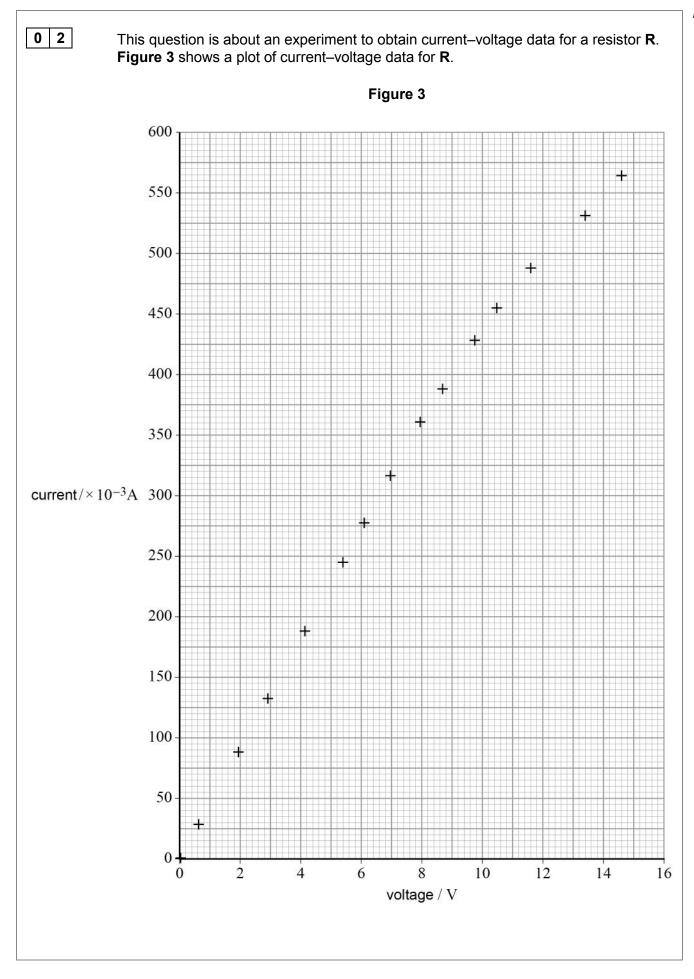
Calculate the wavelength of the laser light.

[2 marks]

wavelength = m

Question 1 continues on the next page

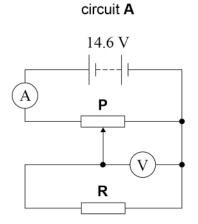
		,
0 1.7	The student plans to repeat the experiment using the same diffraction grating and laser.	L
	State and explain one way the student can change the experimental arrangement to reduce the percentage uncertainty in the measurement of the wavelength.	
	Assume the percentage uncertainty in $\sin\theta$ is the sum of the percentage uncertainties in y and c .	
	[2 marks]	
		Γ

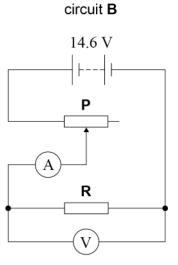


Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Turn over ▶

Do not write outside the box


0 2.1	Draw a best-fit line for the data on Figure 3 . [1 mark]
0 2.2	Identify the data point with the greatest value of current and voltage at which R obeys Ohm's law.
	Draw a circle around this data point on Figure 3 . [1 mark]
0 2.3	When R obeys Ohm's law it has a resistance of 22.2 Ω .
	Determine the percentage increase in the resistance of R from its 22.2 Ω value to its value when the current is 550×10^{-3} A.
	[2 marks]
	percentage increase =
	Question 2 continues on the next page



0 2 . 4

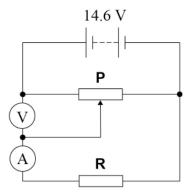
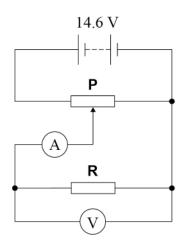

One of the circuits **A** to **D** shown in **Figure 4** was used to obtain the current–voltage data in **Figure 3**. The maximum resistance of resistor **P** is twice the resistance of **R**. The battery has an emf of 14.6~V and negligible internal resistance.

Figure 4

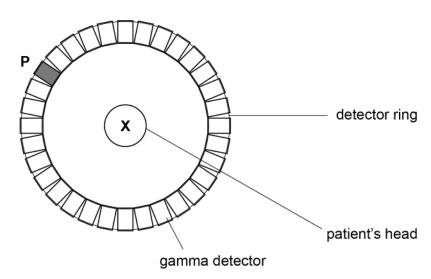


circuit C

circuit D

Do not write outside the

Turn over for the	e next question	


Section B

	Answer all questions in this section.
0 3	This question is about two applications of photon energy and momentum: positron emission tomography (PET) and a solar sail.
	The momentum of a photon is $\frac{\text{photon energy}}{\text{speed of light in a vacuum}}$
0 3.1	In preparing for a PET scan of a patient's brain, a small sample of a substance containing unstable nuclei is injected into the patient. A positron is emitted when one of the unstable nuclei undergoes β^+ decay.
	Explain how the change in quark character in β^+ decay affects the number of neutrons and the number of protons in the unstable nucleus. [2 marks]
	[2 marks]
0 3.2	The positron interacts with an electron, resulting in annihilation. As a result, gamma photons are produced. The energy of each gamma photon is $0.52\ \mathrm{MeV}.$
	Calculate the momentum, in $N\ s,$ of one of the gamma photons produced in this annihilation.
	[2 marks]
	momentum = N s

0 3 . 3 Figure 5 shows a cross-sectional view of the patient's head inside a ring of gamma detectors during the PET scan.

A positron and an electron meet and annihilate at position **X** shown in **Figure 5**. Assume they have negligible kinetic energy when they meet.

Gamma photons are produced in this annihilation and are detected. The arrival of one gamma photon at detector **P** triggers a signal. Detector **P** has been shaded in **Figure 5**.

Identify by shading any other detectors that will be triggered by this annihilation.

[1 mark]

0 3.4	Explain your answer to question 03.3 .	[2 marks]

Question 3 continues on the next page

0 3 . 5

Figure 6 shows a stream of photons of light, emitted from the Sun, incident on a solar sail. A solar sail is an experimental spacecraft that uses photons of light to accelerate it.

Figure 6

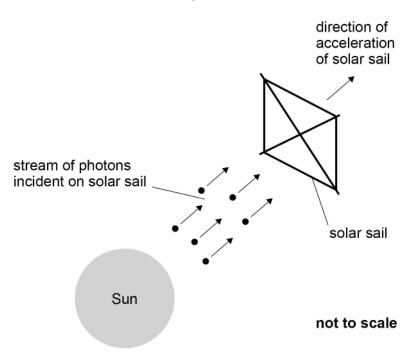
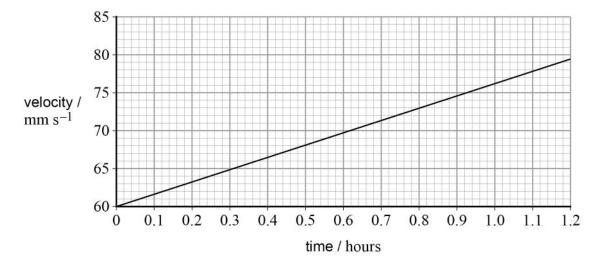
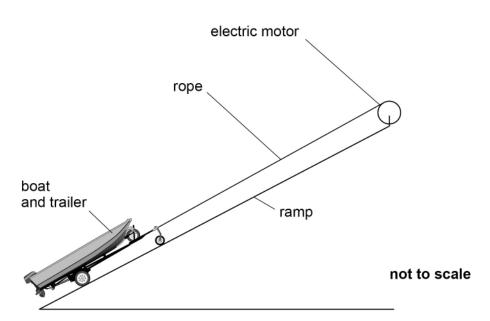



Figure 7 shows the velocity–time graph for the solar sail.

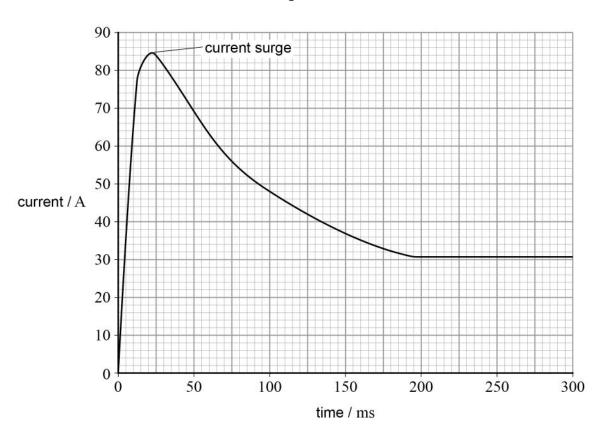
Figure 7


	Calculate the acceleration, in $m\ s^{-2}$, of the solar sail. [2 ma	arks1
	[2 IIId	
		_2
	acceleration = m	s^{-2}
0 3 . 6	The reflectance of a surface is proportional to the percentage of incident photons t are reflected off the surface.	that
	Explain the effect of increasing the reflectance of the solar sail on the acceleration Assume gravity has negligible effect on the solar sail.	
	[2 ma	ırks]

0 4

This question is about the initial motion of a boat and trailer when pulled up a ramp as shown in **Figure 8**.

Figure 8


The boat and trailer are pulled by a motor which is connected to a $24~\rm V$ battery of negligible internal resistance.

The motor is switched on at time t = 0

Figure 9 shows how the current in the motor's circuit varies with time.

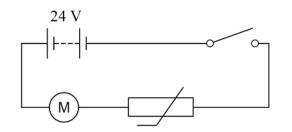
Figure 9

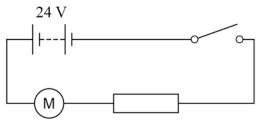
0 4 • 1 Determine the total energy input by the 24 V battery to the motor in the first 200 ms. [3 marks]

total energy input = J

Question 4 continues on the next page

0 4.2	The boat and trailer are initially at rest. In the first $200~\mathrm{ms}$ the boat and trailer are raised through a vertical height of $3.3\times10^{-2}~\mathrm{m}$ and the speed increases to $0.85~\mathrm{m~s^{-1}}$.	
	Assume that all the useful energy output by the motor is transferred into kinetic energy and gravitational potential energy of the boat and trailer. The boat and trailer have a total mass of $180~\rm kg$.	y
	Determine the average efficiency of the motor during these first $200~\mathrm{ms}$. [3 marks]
	average officioney –	
	average efficiency =	-




0 4 . 3

Either of the circuits shown in **Figure 10a** and **Figure 10b** could be used to reduce the initial current surge.

Figure 10a

Figure 10b

The thermistor and the fixed resistor have the same resistance when they are at the temperature of the surroundings.

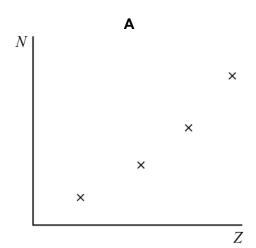
When the surge has ended, the boat and trailer continue to move at a constant speed to the top of the ramp.

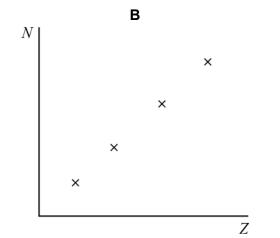
Explain, with reference to the properties of the thermistor and the fixed resistor, why using the thermistor is preferable to using the fixed resistor.

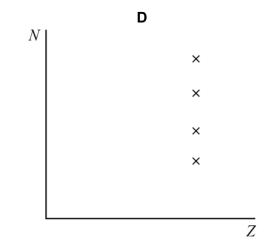
-	·	_		[3 marks]

9

Section C


Each of Questions ${\bf 5}$ to ${\bf 34}$ is followed by four responses, ${\bf A}$, ${\bf B}$, ${\bf C}$ and ${\bf D}$.


For each question select the best response.	
Only one answer per question is allowed.	
For each question completely fill in the circle alongside the appropriate answer.	
CORRECT METHOD WRONG METHODS W ①	
If you want to change your answer you must cross out your original answer as shown.	
If you wish to return to an answer previously crossed out, ring the answer you now wish to sel shown.	ect as
You may do your working in the blank space around each question but this will not be marked Do not use additional sheets for this working.	
	mark]
	mung
A Tensile stress and kinetic energy	
B The moment of a force and kinetic energy	
C Young modulus and the moment of a force	
D Young modulus and tensile stress	


 $oxed{0}$ Which is a graph of neutron number N plotted against proton number Z for the isotopes of a given element?

[1 mark]

N		С			
	×	×	×	×	
					\overline{Z}

Α	0
---	---

D
$$\bigcirc$$

0	7	Unstable nuclide P decays to nuclide T through a series of alpha (α) and beta-minus (β ⁻)
		decays.

Which statement is correct?

[1 mark]

- A P and S are isotopes.
- **B Q** and **T** have different proton numbers.
- C Q and S have different nucleon numbers.
- **D R** has a greater proton number than **P**.
- 0 8 Which row gives a particle with its quark combination and category?

[1 mark]

	Particle	Quark combination	Category	
A	Negative pion	dū	baryon	0
В	Positive pion	ud	hadron	0
С	Negative pion	ud	meson	0
D	Positive pion	dū	hadron	0

0 9 Which row gives the numbers of baryons and leptons in an atom of ${}^{12}_{6}\mathrm{C}$?

[1 mark]

	Number of baryons	Number of leptons
A	6	6
В	12	6
С	6	12
D	18	0

1 0	A muon		[1 mark]
	A is subject to the strong interaction.	0	
	B can decay into an electron only.	0	
	C is a stable particle.	0	
	D is subject to the weak interaction.	0	
1 1	Photons of energy $1.0\times10^{-18}~J$ are incident electrons from the metal surface. Which statement about the emitted electron		use the emission of [1 mark]
	A Thomas have a binatic analysis of 1.0 or	. 10-18 1	
	A They each have a kinetic energy of $1.0 \times$	10	
	B They each have a kinetic energy that is a	a multiple of 1.0×10^{-18} J.	0
	C Their mean kinetic energy is 1.0×10^{-18} .	J.	0
	D The kinetic energy of each must be less	than $1.0 \times 10^{-18} \text{ J}.$	0
1 2	Evidence of the wave-like properties of elec	etrons is	[1 mark]
	A the emission of electrons when short-war metal surface.	velength light falls on a	0
	B the movement of electrons in an electric	current.	0
	C the diffraction of electrons by a metal cry	stal.	0
	D the annihilation of an electron with a pos	itron.	0

1 3	What is the a	approximate avera	age kinetic energy of a cyclist in a race?	
				1 mark]
	A 10 J	0		
	B 10 kJ	0		
	C 10 MJ	0		
	D 10 TJ	0		
1 4		ses the emission	gy levels in an atom drawn to scale. A transition from of a photon of green light.	
	1	E_4		
		E_2		
	energy	E_1		
		ground state		
	Which transi	tion could cause t	the emission of a photon of red light?	1 mark]
	A E_2 to E_1	0		
	B E_3 to E_1	0		
	C E_3 to E_2	0		
	D E_4 to E_1	0		

1	5	A sonar transmitter on a ship produces pulses of sound waves.
---	---	---

Each pulse of sound waves contains 12 complete oscillations.

The frequency of these waves is $8.0~\mathrm{kHz}$ and the speed of sound in seawater is $1.5\times10^3~\mathrm{m~s}^{-1}$.

What is the length of one pulse in seawater?

[1 mark]

C
$$2.25 \times 10^{3} \, \text{m}$$

D
$$1.44 \times 10^5 \, \text{m}$$

1 6 Which gives the regions of the electromagnetic spectrum in order of increasing wavelength?

[1 mark]

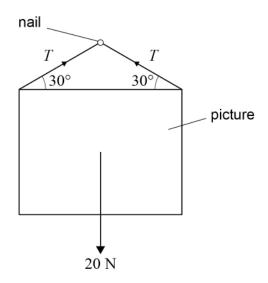
0

1 7 The frequency of the first harmonic of a wire fixed at both ends is 300 Hz. The tension in the wire is now doubled.

What is the frequency of the first harmonic after this change?

[1 mark]

	-	it experiment, the spacing of the he screen on which fringes are f		
•	of wavelength λ is n is w .	incident on the slits the distance	e between adjac	ent fringes on t
Which	n row shows anot	her arrangement that produces	a fringe spacing	of w?
-		3	J. J. J. J.	[1 r
	Spacing of double slits	Distance between the slits and the screen	Wavelength of the light	
A	4s	2D	2λ	0
В	2 <i>s</i>	4 <i>D</i>	2λ	0
С	2 <i>s</i>	2D	4λ	0
D	2 <i>s</i>	2 <i>D</i>	2λ	0
A 5	[O]	der maximum produced?		[1
B 6	0			
C 10	0			
D 13	0			
		of monochromatic light change w	when the light pas	sses from air ir
glass	?			[1
A Sp	eed, wavelength	and frequency.		


c Speed and wavelength only.

 $\boldsymbol{\mathsf{D}}\$ Wavelength and frequency only.

2 1 Which is a description of the pattern produced when monochromatic light passes through a very narrow slit?

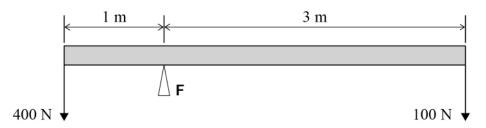
[1 mark]

- A A series of equally-spaced light and dark fringes.
- **B** A narrow central maximum with wider side fringes.
- **C** A few bright fringes that are widely spaced.
- **D** A wide central maximum with narrower side fringes.
- **2 2** A uniform picture is suspended from a string which passes over a smooth nail. The tension in the string is T and the weight of the picture is 20 N.

What is T?

[1 mark]

- **A** 10 N
- **B** 12 N
- **C** 20 N
- **D** 40 N



2 3 Which row contains vector quantities only?

[1 mark]

Α	acceleration	mass	С
В	displacement	momentum	C
С	energy	force	0
D	distance	speed	0

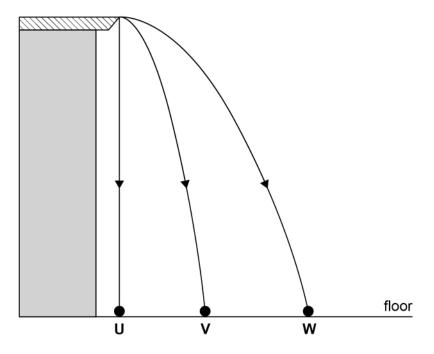
A uniform rod is balanced horizontally about a support **F**. Forces of 400 N and 100 N act at the ends of the rod, as shown.

What is the reaction force acting on the rod at support ${\bf F}$?

[1 mark]

Α	100 N	0

2 5


Three objects ${\bf U}, {\bf V}$ and ${\bf W}$ leave the edge of a bench at the same time.

The objects fall in the same vertical plane with negligible air resistance.

U is released from rest so that it falls vertically.

V and **W** are projected horizontally.

The paths of the three objects are shown.

Which statement is correct?

[1 mark]

- **A U** hits the floor before **V** and **W**.
- **B** W hits the floor before V.
- **C W** hits the floor with the greatest speed.
- **D U** hits the floor with the greatest speed.

2 6

A railway truck of mass 2000~kg travelling horizontally at $1.5~m~s^{-1}$ collides with a stationary truck of mass 3000~kg.

After the collision they move together.

Which row is correct?

[1 mark]

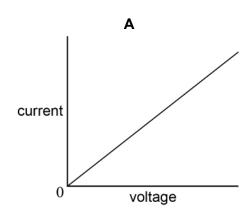
	Speed of the trucks immediately after collision / ${\bf m}~{\bf s}^{-1}$	Effect of collision on total kinetic energy	
Α	0.6	no change	0
В	0.6	decrease	0
С	1.0	no change	0
D	1.0	decrease	0

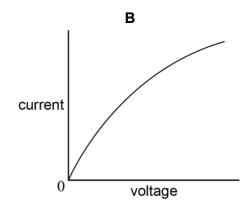
2 7 A car of mass $1000~\rm kg$ accelerates uniformly from rest to a speed of $25.0~\rm m~s^{-1}$ in $50.0~\rm s$. The car is travelling along a horizontal road.

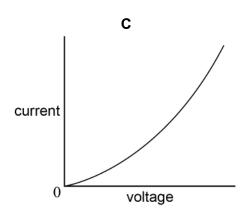
What is the average useful power output of the car over this period?

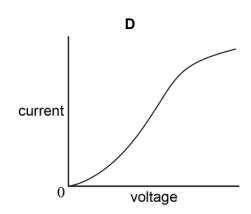
[1 mark]

- **A** 0.50 kW
- 0
- **B** 2.00 kW
- 0
- **C** 6.25 kW
- 0
- **D** 12.5 kW
- 0


A tensile force produces an extension ΔL in a steel wire of initial length L and diameter d. The same steel is used to make a second wire of initial length 2L and diameter $\frac{d}{2}$. What is the extension when the same force is applied to the second wire?

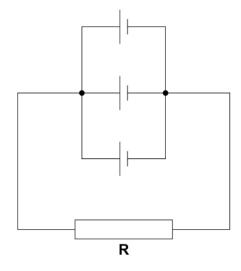

[1 mark]


- A $\frac{\Delta L}{2}$
- 0
- **B** $2\Delta L$
- 0
- **C** 4∆*L*
- 0
- **D** $8\Delta L$
- 0


2 9 Which is the current–voltage characteristic graph for a filament lamp up to its working voltage?

[1 mark]

A \bigcirc


В

C

D \bigcirc

3 0 Three identical cells, each of emf 1.5 V and internal resistance 6.0 Ω, are connected to resistor **R**. The resistance of **R** is 6.0 Ω.

What is the current in R?

[1 mark]

- **A** 0.19 A
- **B** 0.25 A
- **C** 0.56 A
- **D** 0.75 A

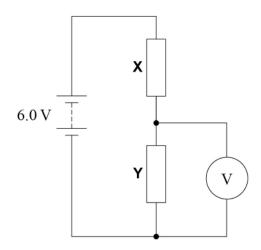
A power of $100~\mathrm{kW}$ at a potential difference of $10~\mathrm{kV}$ is transmitted to a load resistor through cables of total resistance $5.0~\Omega$.

What is the power loss in the cables?

[1 mark]

A 50 W

B 0.5 kW


- ____
- **C** 100 kW
- **D** 20 MW

Resistors **X** and **Y** are connected in series with a 6.0 V battery of negligible internal resistance.

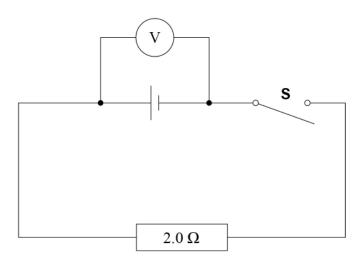
X has resistance R and **Y** has resistance $\frac{R}{2}$.

A voltmeter of resistance R is connected across Y.

What is the reading on the voltmeter?

[1 mark]

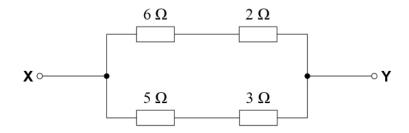
- **A** 0.0 V
- **B** 1.5 V
- **c** 3.0 V
- **D** 4.5 V


Turn over for the next question

Do not write outside the box

3 3 The reading on the voltmeter halves when switch **S** is closed.

What is the internal resistance of the cell?


[1 mark]

- A $0.50\,\Omega$
- **B** 1.0 Ω
- **C** 2.0 Ω
- **D** 4.0 Ω

Do not write outside the box

3 4 In the circuit shown, a potential difference of 3.0 V is applied across **XY**.

What is the current in the 5Ω resistor?

[1 mark]

- **A** 0.38 A
- 0
- **B** 0.60 A
- 0
- **C** 0.75 A
- 0
- **D** 2.7 A
- 0

END OF QUESTIONS

There are no questions printed on this page DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED Copyright information For confidentiality purposes, acknowledgements of third-party copyright material are published in a separate booklet rather than including them on the

For confidentiality purposes, acknowledgements of third-party copyright material are published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2019 AQA and its licensors. All rights reserved.

IB/M/Jun19/7407/2

Do not write outside the

box