

STEP Support Programme

STEP 2 Calculus Questions

1 2005 S2 Q1

Find the three values of x for which the derivative of $x^2e^{-x^2}$ is zero.

Given that a and b are distinct positive numbers, find a polynomial P(x) such that the derivative of $P(x)e^{-x^2}$ is zero for $x=0, x=\pm a$ and $x=\pm b$, but for no other values of x.

2 2006 S2 Q4

By making the substitution $x = \pi - t$, show that

$$\int_0^{\pi} x f(\sin x) dx = \frac{1}{2} \pi \int_0^{\pi} f(\sin x) dx,$$

where $f(\sin x)$ is a given function of $\sin x$.

Evaluate the following integrals:

(i)
$$\int_0^\pi \frac{x \sin x}{3 + \sin^2 x} \, \mathrm{d}x;$$

(ii)
$$\int_0^{2\pi} \frac{x \sin x}{3 + \sin^2 x} dx$$
;

(iii)
$$\int_0^\pi \frac{x |\sin 2x|}{3 + \sin^2 x} \, \mathrm{d}x.$$

3 2007 S2 Q6

- (i) Differentiate $\ln (x + \sqrt{3 + x^2})$ and $x\sqrt{3 + x^2}$ and simplify your answers. Hence find $\int \sqrt{3 + x^2} dx$.
- (ii) Find the two solutions of the differential equation

$$3\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 + 2x\frac{\mathrm{d}y}{\mathrm{d}x} = 1$$

that satisfy y = 0 when x = 1.

4 2008 S2 Q7

(i) By writing $y = u(1+x^2)^{\frac{1}{2}}$, where u is a function of x, find the solution of the equation

$$\frac{1}{y}\frac{\mathrm{d}y}{\mathrm{d}x} = xy + \frac{x}{1+x^2}$$

for which y = 1 when x = 0.

(ii) Find the solution of the equation

$$\frac{1}{y}\frac{\mathrm{d}y}{\mathrm{d}x} = x^2y + \frac{x^2}{1+x^3}$$

for which y = 1 when x = 0.

(iii) Give, without proof, a conjecture for the solution of the equation

$$\frac{1}{y}\frac{dy}{dx} = x^{n-1}y + \frac{x^{n-1}}{1+x^n}$$

for which y = 1 when x = 0, where n is an integer greater than 1.

If you are finding question 4 quite tricky you might like to tackle the question below first (which uses the same ideas but is a STEP I question).

5 2010 S1 Q6

Show that, if $y = e^x$, then

$$(x-1)\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - x\frac{\mathrm{d}y}{\mathrm{d}x} + y = 0. \tag{*}$$

In order to find other solutions of this differential equation, now let $y = ue^x$, where u is a function of x. By substituting this into (*), show that

$$(x-1)\frac{d^2u}{dx^2} + (x-2)\frac{du}{dx} = 0.$$
 (**)

By setting $\frac{du}{dx} = v$ in (**) and solving the resulting first order differential equation for v, find u in terms of x. Hence show that $y = Ax + Be^x$ satisfies (*), where A and B are any constants.