These units of measurement were used in England up to 1826 and were later replaced by imperial units. The imperial units were a mixture of the Roman system of units and Anglo-Saxon. Different standards were applied to these units at different times that were used for various applications.

The two primary sets of English units were Winchester Units and Exchequer standards. Winchester units were used from 1495 to 1587, while Exchequer standards were used from 1588 to 1825. Imperial units replaced these standards in 1824.

Although the United States accepted the metric system in 1866, however, the US has still not adopted the metric system as its official system of measurement. People in the US used the English system in their daily measurement which is the reason why the English system is still prevalent in the US. The English system helps to measure the bigger units without the need for external measuring tools. For example, the human foot can be used to measure the shorter ground distances and paces can be used to measure the long distances. Traditionally, people used to measure capacities through cups, pails, and baskets.

Now, that you are familiar with the history of the English system of measurement, let us see what are its units of length, capacity, mass, and area under the English system of measurement.

Units of Area

Inch = 2.54 cm.

Foot = 12 inches = 30.48 cm.

Yard = 3 feet = 91.44 cm.

Fathom = 2 yards = 1.829 m.

Statute mile = 880 fathoms = 1.609 km.

Nautical mile = 1,852 m.

Units of Capacity

Pint (UK) = 0.568 litres

Pint (U.S.) = 0.473 litres

Barrel = 159 litres

Units of Mass

Ounce = 28.3 grams

Pound = 454 grams

Units of Area

Acre = 4,047 m²

 

Metric System

The metric system of measurement was implemented after the decimalized system in the 1790s. The evolution of these systems resulted in the definition of the International System of Units (SI) which is managed by an international standard body.

The metric system has gradually evolved. This evolution culminated in the recognition of many principles. Nature has many dimensions and each of the primary dimension of nature are represented by one base unit. The base units are defined based on natural principles instead of physical artifacts. Before the metric system, every country was using a different system of measurement which made business relations between different nations extremely difficult. The Academy of Sciences in Paris proposed this system in 1792 which was adopted by all countries except, Burma, Liberia, and the United States.

Now, let us see what are units of length, mass, capacity, and area under the Metric system.

Units of Length

Meter

Other Units of Length

There are also other units for measuring large and small quantities, the most common are:

kilometer km 1,000 m
hectometer hm 100 m
decameter dam 10 m
meter m 1 m
decimeter dm 0.1 m
centimeter cm 0.01 m
millimeter mm 0.001 m

 

Units of Mass

Grams

Other Units of Mass

Units of Capacity

Liters and milliliters

Other Units of Capacity

Units of Area

Square meter m^2

Other Units of Area

square kilometer km² 1,000,000 m²
square hectometer hm² 10,000 m²
square decameter dam² 100 m²
square meter 1 m²
square decimeter dm² 0.01 m²
square centimeter cm² 0.0001 m²
square millimeter mm² 0.000001 m²

Conversion of Units

Let us now solve some examples in which we will convert one unit into another.

 

Example 1

How many yards are there is 56 feet?

Solution

We know that in 1 yard there are 3 feet.

1 yard = 3 feet

56 feet = x yards

56 feet  = \frac {56}{3} yards

56 feet = 18.66 yards

 

Example 2

It takes 2908 liters of water to fill up the well to its full capacity. How many barrels of water are needed to fill up the well?

Solution

1 barrel = 159 liters

2908 liters = x barrels

2908 liters = \frac {2908}{159} barrels

2908 liters = 18.3 barrels

 

Example 3

Sarah needs 12 ounces of sugar, 2 ounces of salt, 24 ounces of flour, and 3 pints (U.K) of milk. How much of these items are needed in grams and liters?

Solution

Sugar needed for cake in ounces = 12

1 ounce = 28.3 grams

12 ounces of sugar = 12 x 28.3

= 339.6 grams

 

Salt needed for cake in ounces = 2

1 ounce = 28.3 grams

12 ounces of sugar = 2 x 28.3

= 56.6 grams

Flour needed for cake in ounces = 24

1 ounce = 28.3 grams

12 ounces of sugar = 24 x 28.3

= 679.2 grams

 

Number of pints (U.K) of milk needed to bake a cake = 3

1 Pint (UK) = 0.568 liters

3 pints (UK) = 3 x 0.568

= 1.704 liters

 

Example 4

Before the party, Sarah bought 20 bottles of water. Each bottle can hold 2.5 liters. How many pints (US) of water are present in all the 20 bottles?

Solution

Total number of bottles = 20

The capacity of water in a single bottle = 2.5 liters

The capacity of water in 20 bottles = 20 x 2.5 liters

= 50 liters

1 Pint (U.S.) = 0.473 liters

50 liters = \frac {50}{0.473} pints

= 105.67 pints

 

The next three problems will be about the metric system of measurement.

 

Example 5

Convert  12,000 mm^2 into m^2. <h3>Solution</h3> Sincemm^2is smaller unit andm^2is a bigger unit, therefore we will divide to convert the unit: 1mm^2= 0.0000001m^2 1m^2=\frac {1}{1000000} mm^2 12,000 square millimeters will be divided by 1000,000 to get the area in square meters: 12,000mm^2=\frac {12000}{1000000} m^2 = 0.012m^2  <h2>Example 6</h2> 51 decaliters of water can be present in a bigger water tank at a time. Another smaller tank can hold 1/3rd as much water as the bigger tank can hold. Suppose both the tanks are filled to their full capacity. Calculate the total amount of water that is present in both the tanks? <h3>Solution</h3> First, we will calculate the total amount of water that is present in both the tanks if they are filled to their full capacity.  The capacity of the bigger tank to hold water to its full capacity = 51 dal  The capacity of the smaller tank to hold water to its full capacity =\frac {1}{3} \times 51 = 17$ dal

The capacity of both the water tanks to hold water to their full capacity = 51 + 17 = 69 dal

1 dal = 10 liters

Amount of water in both the tanks if they are filled to their full capacity = 69 x 10 = 690 liters.

Hence, 690 liters of water are present in both tanks.

 

Example 7

An athlete covered a distance of 8 km, 0.75 hm 12 dam on his bicycle. His fellow covered a distance of 8000 m 2 hm and  8 dam on his bicycle. Who traveled the longest distance?

Solution

To tell the longest distance traveled, we should convert the distances covered by both the athletes into one unit. Let us convert the distances covered by both the athletes in meters.

Distance covered by the first athlete = 8 km 0.75 hm 12 dam

1 kilometer = 1000 meters

8 kilometers = 8 x 1000 meters

= 8000 meters

 

1 hm = 100 meters

0.75 hm = 0.75 x 100

= 75 meters

 

1 dam = 10 meters

12 dam = 12 x 10 meters

= 120 meters

Total distance covered by first athlete in meters = 8000 + 75 + 120 = 8195 meters

 

 

 

Distance covered by second athlete = 8000 m 2 hm 8 dam

1 hm = 100 m

2 hm = 2 x 100 = 200 m

 

1 dam = 10 m

8 dam = 8 x 10 = 80 m

 

Total distance covered by second athlete in meters = 8000 + 200 + 80

= 8280 meters

Now, let us compare the distance covered by both the athletes. The first athlete covered a distance of 8195 meters and the second athlete covered the distance of 8280 meters. Hence, we can say that the second athlete covered more distance than the first athlete.

Need a Maths teacher?

Did you like the article?

1 Star2 Stars3 Stars4 Stars5 Stars 5.00/5 - 1 vote(s)
Loading...

Emma

I am passionate about travelling and currently live and work in Paris. I like to spend my time reading, gardening, running, learning languages and exploring new places.