The best Maths tutors available
Sehaj
4.9
4.9 (56 reviews)
Sehaj
£60
/h
Gift icon
1st lesson free!
Intasar
5
5 (68 reviews)
Intasar
£129
/h
Gift icon
1st lesson free!
Johann
5
5 (47 reviews)
Johann
£50
/h
Gift icon
1st lesson free!
Hiren
5
5 (32 reviews)
Hiren
£149
/h
Gift icon
1st lesson free!
Poonam
5
5 (62 reviews)
Poonam
£100
/h
Gift icon
1st lesson free!
Harjinder
4.9
4.9 (163 reviews)
Harjinder
£25
/h
Gift icon
1st lesson free!
Syed
5
5 (64 reviews)
Syed
£60
/h
Gift icon
1st lesson free!
Farooq
4.9
4.9 (49 reviews)
Farooq
£50
/h
Gift icon
1st lesson free!
Sehaj
4.9
4.9 (56 reviews)
Sehaj
£60
/h
Gift icon
1st lesson free!
Intasar
5
5 (68 reviews)
Intasar
£129
/h
Gift icon
1st lesson free!
Johann
5
5 (47 reviews)
Johann
£50
/h
Gift icon
1st lesson free!
Hiren
5
5 (32 reviews)
Hiren
£149
/h
Gift icon
1st lesson free!
Poonam
5
5 (62 reviews)
Poonam
£100
/h
Gift icon
1st lesson free!
Harjinder
4.9
4.9 (163 reviews)
Harjinder
£25
/h
Gift icon
1st lesson free!
Syed
5
5 (64 reviews)
Syed
£60
/h
Gift icon
1st lesson free!
Farooq
4.9
4.9 (49 reviews)
Farooq
£50
/h
Gift icon
1st lesson free!
Let's go

Exercise 1

Solve the logarithmic equations.

1   

2   

3   

5   

Exercise 2

Solve the logarithmic simultaneous equations.

1           

2         

3         

Solution of exercise 1

Solve the logarithmic equations.

Applying the logarithmic power rule here, we will get the following expression:

Write the two terms on the left hand side as a single log function by applying logarithm product rule:

Since both sides of the equation has log functions, so you can write the resultant expression without them like this:

Set the equation equal to 0 by taking on the left hand side of the equation:

The above fraction can be written as:

Either or

Hence, , or

     
2   
Apply the logarithm power rule to write the above expression as:
Apply the logarithm quotient rule on the left hand side of the equation:
Cancel the log functions from both sides of the equation and solve the resultant equation algebraically:
Take 2 to the left hand side of the equation:

If we substitute in the original equation, we will end up taking the log of negative number which is impossible. Hence, this equation has No Solution.

3     

By taking the factors from right hand side of the equation to the left hand side and setting the equation to 0, we will get the following expression:

Suppose

By substituting the value in the equation, we will get the following new equation:

We will factor the above equation by expanding it and writing the factors in two pairs like this:

Either or 

Hence, t = 1 or t = -2

Remember that we assumed , hence we can say that or

By converting the above values in exponential form, we get the following values of :

and

4   

Apply the power rule here to write the equation as follows:

Cancel the log functions on both sides of the equation to get the following algebraic expression:

Use the formula to expand the right hand side of the equation:

5     

Take the expression from the denominator on the left hand side to the numerator on the right hand side of the equation:

Apply the logarithm power rule here to get the following equation:

Cancel the log functions from both sides of the equation and solve the resultant equation algebraically:

Find factors of above expression by expanding it:

Hence, or

Solution of exercise 2

Solve the logarithmic simultaneous equations.

1   

Use the logarithm product rule on the left hand side of the equation:
In exponential form, it can be written as:
Substitute this value of in the second equation:
Use the quadratic formula to find the value of :

2   

Apply the logarithm product rule on the left hand side of the equation:Cancel the log function from both sides of the equation:
Substitute this value in the second equation:
and Hence, or

If , then

If then

3  

We can rewrite the second equation using the exponent product rule:

Suppose and

We will solve this equation through substitution:

Substitute this value of in the second equation:

Put this value of in the first equation to get the value of :

Remember that and

Hence, and 

Since, 2 raised to the power 2 is equal to 4, so the value of .

Similarly, 3 raised to the power 3 is equal to 27, so .

Find a good maths tutor near me here.

Did you like this article? Rate it!

4.00 (6 rating(s))
Loading...
Emma

Emma

I am passionate about travelling and currently live and work in Paris. I like to spend my time reading, gardening, running, learning languages and exploring new places.