Chapters

Orthogonal Vectors

Two vectors are orthogonal or perpendicular if their dot product is zero.

Example

Not perpendicular.

Orthonormal Vectors

Two vectors are orthonormal if:

1. Their dot product is zero.

2.The two vectors are unit vectors.

Calculate the value of k for the vectors = (1, k) and = (−4, k) knowing that they are orthogonal.

· = 0 −4 + m² = 0; m = ± 2

If { , } is an orthonormal basis, calculate:

1 · = 1 · 1 · cos 0° = 1

2 · = 1 · 1 · cos 90° = 0

3 · = 1 · 1 · cos 90° = 0

4 · = 1 · 1 · cos 0° = 1

If {, } is an orthonormal basis and are:

Calculate the value of k knowing that .

If {, } is an orthonormal basis and are:

Calculate the value of k for the two orthogonal vectors.

Did you like the article?

1 Star2 Stars3 Stars4 Stars5 Stars (No Ratings Yet)
Loading...

Emma

I am passionate about travelling and currently live and work in Paris. I like to spend my time reading, gardening, running, learning languages and exploring new places.

Did you like
this resource?

Bravo!

Download it in pdf format by simply entering your e-mail!

{{ downloadEmailSaved }}

Your email is not valid