...Stochastic Calculus for Finance, Volume I and II by Yan Zeng Last updated: August 20, 2007 This is a solution manual for the two-volume textbook Stochastic calculus for ﬁnance, by Steven Shreve. If you have any comments or ﬁnd any typos/errors, please email me at yz44@cornell.edu. The current version omits the following problems. Volume I: 1.5, 3.3, 3.4, 5.7; Volume II: 3.9, 7.1, 7.2, 7.5–7.9, 10.8, 10.9, 10.10. Acknowledgment I thank Hua Li (a graduate student at Brown University) for reading through this solution manual and communicating to me several mistakes/typos. 1 1.1. Stochastic Calculus for Finance I: The Binomial Asset Pricing Model 1. The Binomial No-Arbitrage Pricing Model Proof. If we get the up sate, then X1 = X1 (H) = ∆0 uS0 + (1 + r)(X0 − ∆0 S0 ); if we get the down state, then X1 = X1 (T ) = ∆0 dS0 + (1 + r)(X0 − ∆0 S0 ). If X1 has a positive probability of being strictly positive, then we must either have X1 (H) > 0 or X1 (T ) > 0. (i) If X1 (H) > 0, then ∆0 uS0 + (1 + r)(X0 − ∆0 S0 ) > 0. Plug in X0 = 0, we get u∆0 > (1 + r)∆0 . By condition d < 1 + r < u, we conclude ∆0 > 0. In this case, X1 (T ) = ∆0 dS0 + (1 + r)(X0 − ∆0 S0 ) = ∆0 S0 [d − (1 + r)] < 0. (ii) If X1 (T ) > 0, then we can similarly deduce ∆0 < 0 and hence X1 (H) < 0. So we cannot have X1 strictly positive with positive probability unless X1 is strictly negative with positive probability as well, regardless the choice of the number ∆0 . Remark: Here the condition X0 = 0 is......
Words: 19710 - Pages: 79