Determine if the following functions are even or odd:

Exercise 1

f(x) = { x }^{ 6 } + { x }^{ 4 } - { x }^{ 2 }

The best Maths tutors available
1st lesson free!
Intasar
4.9
4.9 (25 reviews)
Intasar
£42
/h
1st lesson free!
Matthew
5
5 (17 reviews)
Matthew
£25
/h
1st lesson free!
Paolo
4.9
4.9 (12 reviews)
Paolo
£25
/h
1st lesson free!
Dr. Kritaphat
4.9
4.9 (6 reviews)
Dr. Kritaphat
£49
/h
1st lesson free!
Ayush
5
5 (28 reviews)
Ayush
£60
/h
1st lesson free!
Petar
4.9
4.9 (9 reviews)
Petar
£27
/h
1st lesson free!
Farooq
5
5 (14 reviews)
Farooq
£40
/h
1st lesson free!
Dorothy
5
5 (5 reviews)
Dorothy
£50
/h
1st lesson free!
Intasar
4.9
4.9 (25 reviews)
Intasar
£42
/h
1st lesson free!
Matthew
5
5 (17 reviews)
Matthew
£25
/h
1st lesson free!
Paolo
4.9
4.9 (12 reviews)
Paolo
£25
/h
1st lesson free!
Dr. Kritaphat
4.9
4.9 (6 reviews)
Dr. Kritaphat
£49
/h
1st lesson free!
Ayush
5
5 (28 reviews)
Ayush
£60
/h
1st lesson free!
Petar
4.9
4.9 (9 reviews)
Petar
£27
/h
1st lesson free!
Farooq
5
5 (14 reviews)
Farooq
£40
/h
1st lesson free!
Dorothy
5
5 (5 reviews)
Dorothy
£50
/h
First Lesson Free>

Exercise 2

f(x) = { x }^{ 5 } + { x }^{ 3 } - x

Exercise 3

f(x) = x \left | x \right |

Exercise 4

f(x) = \left | x \right | - 1

Exercise 5

f(x) = \frac { { x }^{ 2 } }{ 1 - { x }^{ 2 } }

Exercise 6

f(x) = \frac { x }{ 1 - { x }^{ 2 } }

 

 

Solution of exercise 1

Determine if the function is even or odd.

f(x) = { x }^{ 6 } + { x }^{ 4 } - { x }^{ 2 }

f(-x) = { (-x) }^{ 6 } + { (-x) }^{ 4 } - { (-x) }^{ 2 } = { x }^{ 6 } + { x }^{ 4 } - { x }^{ 2 }

The function is even and symmetrical about the vertical axis.

 

Solution of exercise 2

Determine if the function is even or odd.

f(x) = { x }^{ 5 } + { x }^{ 3 } - x

f(-x) = { (-x) }^{ 5 } + { (-x) }^{ 3 } - (-x) = - { x }^{ 5 } - { x }^{ 3 } + x

The function is odd and symmetrical about the origin.

 

Solution of exercise 3

Determine if the function is even or odd.

f(x) = x \left | x \right |

f(-x) = - x \left | (-x) \right | = - x \left | x \right |

The function is odd and symmetrical about the origin.

 

Solution of exercise 4

Determine if the function is even or odd.

f(x) = \left | x \right | - 1

f(-x) = \left | (-x) \right | - 1 = \left | x \right | - 1

The function is even and symmetrical about the vertical axis.

 

Solution of exercise 5

Determine if functions are even or odd:

f(x) = \frac { { x }^{ 2 } }{ 1 - { x }^{ 2 } }

f(-x) = \frac { { (-x) }^{ 2 } }{ 1 - { (-x) }^{ 2 } } = \frac { { x }^{ 2 } }{ 1 - { x }^{ 2 } }

The function is even and symmetrical about the vertical axis.

 

Solution of exercise 6

Determine if the function is even or odd.

f(x) = \frac { x }{ 1 - { x }^{ 2 } }

f(-x) = \frac { (-x) }{ 1 - { (-x) }^{ 2 } } = \frac { - x }{ 1 - { x }^{ 2 } }

The function is odd and symmetrical about the origin.

 

Need a Maths teacher?

Did you like the article?

1 Star2 Stars3 Stars4 Stars5 Stars 5.00/5 - 1 vote(s)
Loading...

Hamza

Hi! I am Hamza and I am from Pakistan. My hobbies are reading, writing and playing chess. Currently, I am a student enrolled in the Chemical Engineering Bachelor program.